Mecanismos neurais da aldosterona no controle cardiovascular e do equilíbrio hidroeletrolítico

Conteúdo do artigo principal

Silmara Formenti
Guus Hermanus Maria Schoorlemmer
Thiago Santos Moreira
Eduardo Colombari

Resumo

A aldosterona é o mais importante mineralocorticóide circulante. É secretada pela zona glomerulosa da glândula adrenal e atua em orgãos-alvo tais como os rins, cólon, glândulas salivares e sudoríparas por meio de mecanismos genômicos, a fim de manter o equilíbrio hidroeletrolítico do organismo. Mais recentemente vêm surgindo novas descobertas sobre as ações da aldosterona, as quais não se mostram restritas aos alvos clássicos de sua ação. Orgãos como coração, vasos e muitos locais do sistema nervoso central (SNC), são apontados como novos alvos da ação da aldosterona, mostrando efeitos fisiológicos bem como fisiopatológicos, que na maioria das vezes relacionam-se a mecanismos não-genômicos. Os principais efeitos da aldosterona nesses novos alvos incluem: estimulação do apetite ao sódio (Na+), aumento da pressão arterial basal, prejuízo do barorreflexo arterial e produção de hipertrofia e fibrose no tecido cardíaco. Esses novos achados enaltecem o papel da aldosterona como o hormônio-chave no controle cardiovascular. No entanto, os mecanismos envolvidos na produção desses efeitos permanecem desconhecidos e novos estudos são necessários para o seu completo entendimento. O principal objetivo desta revisão será sumariar diversos estudos que indicam o envolvimento da aldosterona nos mecanismos de controle cardiovascular e do equilíbrio hidroeletrolítico do organismo.

Detalhes do artigo

Seção
Artigos de Revisão

Referências

Simpson AS, Tait JF, Wettstein A, Neher R, von Euw J , Reichstein T. Isolation from the adrenals of a new crystalline hormone with specially high effectiveness on mineral metabolism. Experientia 1953;9:333-5.

Tait SA, Tait JF, Coghlan JP. The discovery, isolation and identification of 2. aldosterone: reflections on emerging regulation and function. Mol Cell Endocrinol 2004;217(1-2):1-21. http://dx.doi.org/10.1016/j.mce.2003.10.004

Fejes-Tóth G, Pearce D, Náray-Feje-Tóth A. Subcellular localization of 3. mineralocorticoid receptors in living cells: Effects of receptor agonists and antagonists. Proc Natl Acad Sci USA 1998;95(6):2973-8. http://dx.doi.org/10.1073/pnas.95.6.2973

Odermatt A, Arnold P, Frey FJ. The intracellular localization of the 4. mineralocorticoid receptor is regulated by 11 beta-hydroxysteroid dehydrogenase type 2. J Biol Chem 2001;276(30):28484-92. http://dx.doi.org/10.1074/jbc.M100374200

Náray-Fejes-Tóth A, Fejes-Tóth G. Subcellular localization of the 5. type 2 11 beta- hydroxysteroid dehydrogenase. J Biol Chem 1996;271(26):15436-42.

Odermatt A, Arnold P, Stauffer A, Frey BM, Frey FJ. The N-terminal anchor sequences of 11 beta-hydroxysteroid dehydrogenase determine their orientation in the endoplasmatic reticulum membrane. J Biol Chem 1999;274(40):28762-70. http://dx.doi.org/10.1074/jbc.274.40.28762

Roland BL, Funder JW. Localization of 11 beta-hydroxysteroid 7. dehydrogenase type 2 in rat tissues: in situ studies. Endocrinology 1996;137(3):1123-8.

Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman 8. DE, et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with glucorticoid receptor. Science 1987;237(4812):268-75. http://dx.doi.org/10.1126/science.3037703

Reul JM, de Kloet ER. Two receptor systems for corticosterone in 9. rat brain: microdistribution and differential occupation. Endocrinology 1985;117(6):2505-11. http://dx.doi.org/10.1210/endo-117-6-2505

Ito T, Morita N, Nishi M, Kawata M. In vitro and in vivo immunocytochemistry 10. for distribution of mineralocorticoid receptor with the use of specific antibody. Neurosci Res 2000;37(3):173-82. http://dx.doi.org/10.1016/S0168-0102(00)00112-7

Shepard KE, Funder JW. Equivalent affinity of aldosterone and corticosterone for type I receptors in kidney and hippocampus: direct binding studies. J Steroid Biochem 1987;28(6):737-42. http://dx.doi.org/10.1016/0022-4731(87)90406-7

Gomez-Sanchez EP, Gomez-Sanchez CE. Is aldosterone synthesized 12. in the CNS regulated and functional? Trends Endocrinol Metab 2003;14(10):444-6. http://dx.doi.org/10.1016/j.tem.2003.10.004

Funder J, Myles K. Exclusion of corticosterone from epithelial 13. mineralocorticoid receptors is insufficient for selectivity of aldosterone action: in vivo binding studies. Endocrinology 1996;137(12):5264-8.

Edwards CR, Walker BR, Benediktisson R, Seckl JR. Congenital and acquired 14. syndromes of apparent mineralocorticoid excess. J Steroid Biochem Mol Biol 1993;45(1-3):1-5. http://dx.doi.org/10.1016/0960-0760(93)90114-C

Stewart PM, Krozowski ZS, Gupta A, Milford DV, Howie AJ, Sheppard 15. MC, et al. Hypertension in the syndrome of apparent mineralocorticoid excess due to mutation of the 11 beta-hydroxysteroid dehydrogenase type 2 gene. Lancet 1996;347(8994):88-91. http://dx.doi.org/10.1016/S0140-6736(96)90211-1

Booth RE, Johnson JP, Stockand JD. Aldosterone. Adv Physiol Educ 16. 2002;26(1-4):8-20.

Connell JMC, Davies E. The new biology of aldosterone. J Endocrinol 17. 2005;186(1):1-20. http://dx.doi.org/10.1677/joe.1.06017

Sakai RR, McEwen BS, Fluharty SJ, Ma LY. The amygdala: Site of genomic 18. and nongenomic arousal of aldosterone-induced sodium intake. Kidney Int 2000;57(4):1337-45. http://dx.doi.org/10.1046/j.1523-1755.2000.00972.x

Falkenstein E, Christ M, Feuring M, Wehling M. Specific nongenomic 19. actions of aldosterone. Kidney Int 2000;57(4):1390-4. http://dx.doi.org/10.1046/j.1523-1755.2000.00980.x

Wang W, McClain JM, Zucker IH. Aldosterone reduces baroreceptor 20. discharge in the dog. Hypertension 1992;19(3):270-77. http://dx.doi.org/10.1161/01.HYP.19.3.270

Taddei S, Virdis A, Mattei P, Salvetti A. Vasodilation to acetylcholine 21. in primary and secondary forms of human hypertension. Hypertension 1993;21(6 pt 2):929-33. http://dx.doi.org/10.1161/01.HYP.21.6.929

Jazayeri A, Meyer WJ. Mineralocorticoid-induced increased in beta-22. adrenergic receptors of cultured rat arterial smooth muscle cells. J Steroid Biochem 1989;33(5):987-91. http://dx.doi.org/10.1016/0022-4731(89)90250-1

Schiffrin EL, Gutkowska J, Genest J. Effect of angiotensin II and 23. deoxycorticosterone infusion on vascular angiotensin II receptor in rats. Am J Physiol 1984;246(4 pt 2):H608- H614.

Schiffrin EL, Franks DJ, Gutkowska J. Effect of aldosterone on 24. vascular angiotensin II receptors in the rat. Can J Physiol Pharmacol 1985;63(12):1522-7. http://dx.doi.org/10.1139/y85-250

Chun TY, Bloem LJ, Pratt JH. Aldosterone inhibits inducible nitric oxide synthase 25. in neonatal rat cardiomyocytes. Endocrinology 2003;144(5):1712-7. http://dx.doi.org/10.1210/en.2002-220956

Romagni P, Rossi F, Guerrini L, Quirini C, Santiemma V. Aldosterone induces contraction of the resistance arteries in man. Atherosclerosis 2003;166(20:345-9.

Schmitd BM, Oehmer S, Delles C, Bratke R, Schneider MP, Klingbeil A, et al. 27. Rapid nongenomic effects of aldosterona on human forearm vasculature. Hypertension 2003;42(2):156-60. http://dx.doi.org/10.1161/01.HYP.0000083298.23119.16

Uhrenholt TR, Schjerning J, Hansen PB, Norregaard R, Jensen BL, Sorensen 28. GL, et al. Rapid inhibition of vasoconstriction in renal afferent arterioles by aldosterone. Circ Res 2003;93(12):1258-66. http://dx.doi.org/10.1161/01.RES.0000106135.02935.E1

Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and 29. myocardial fibrosis. J Lab Clin Med 1992;120(6):893-901.

Rocha R, Stier CT Jr. Pathophysiological effects of aldosterone in 30. cardiovascular tissues. Trends Endocr Metab 2001;12(7):308-14. http://dx.doi.org/10.1016/S1043-2760(01)00432-5

Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The 31. effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341(10):709-17. http://dx.doi.org/10.1056/NEJM199909023411001

Pitt B, Remme WJ, Zannad F, Neaton J, Martinez F, Roniker B, et 32. al. Eplerenone, a selective aldosterona blocker, in patients with left ventricular dysfunction after myocardial infarction. New Engl J Med 2003;348(14):1309-21. http://dx.doi.org/10.1056/NEJMoa030207

Young M, Funder JW. Eplerenone, but not steroid withdrawl, reverses 33. cardiac fibrosis in deoxycorticosterone/salt-treated rats. Endocrinology 2004;145(7):3153-7. http://dx.doi.org/10.1210/en.2004-0005

Robert V, Van Thiem N, Cheav SL, Mouas C, Swynghedauw B, Delcayre 34. C. Increased cardiac types I and III collagen mRNAs in aldosterone-salt hypertension. Hypertension 1994;24(1):30-6. http://dx.doi.org/10.1161/01.HYP.24.1.30

Robert V, Silvestre JS, Charlemagne D, Sabri A, Trouvé P, Wassef M, et 35. al. Biological determinants of aldosterone-induced cardiac fibrosis in rats. Hypertension 1995;26(6 pt 1):971-8. http://dx.doi.org/10.1161/01.HYP.26.6.971

Fullerton MJ, Funder JW. Aldosterone and cardiac fibrosis: in vitro studies. 36. Cardiovasc Res 1994;28(12):1863-7. http://dx.doi.org/10.1093/cvr/28.12.1863

Fluharty SJ, Epstein AN. Sodium appetite elicited by intracerebroventricular 37. infusion of angiotensina II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav Nerosci 1983;97(5):746-58. http://dx.doi.org/10.1037/0735-7044.97.5.746

Sakai RR, Nicolaïdis S, Epstein AN. Salt appetite is supressed by interference 38. with angiotensin II and aldosterone. Am J Physiol 1986;251(4 pt 2):R762-8.

Geerling JC, Engeland WC, Kawata M, Loewy AD. Aldosterone target 39. neurons in the nucleus tractus solitarius drive sodium appetite. J Neurosci 2006;26(2):411-7. http://dx.doi.org/10.1523/JNEUROSCI.3115-05.2006

Gomez-Sanchez EP. Intracerebroventricular infusion of aldosterone induces 40. hypertension in rats. Endocrinology 1986;118(2):819-23. http://dx.doi.org/10.1210/endo-118-2-819

Kageyama Y, Bravo EL. Hypertensive mechanisms associated with centrally 41. administered aldosterone in dogs. Hypertension 1988;11(6 pt 2):750-3. http://dx.doi.org/10.1161/01.HYP.11.6.750

Chen M, Lee J, Malvin RL. Central administration of aldosterone increases 42. blood pressure in rats. Clin Exp Hypertens A 1989;11(3):459-72. http://dx.doi.org/10.3109/10641968909035354

Gómez-Sánchez EP, Fort CM, Gómez-Sánchez CE. Intracerebroventricular 43. infusion of RU28318 blocks aldosterone-salt hypertension. Am J Physiol 1990; 258(3 pt 1):E482-4.

Gómez-Sánchez EP, Venkataraman MT, Thwaites D, Fort C. ICV infusion of 44. corticosterone antagonizes ICV-aldosterone hypertension. Am J Physiol 1990;258(4 pt 1):E649-53.

Geerling JC, Kawata M, Loewy AD. Aldosterone-sensitive neurons in the 45. rat central nervous system. J Comp Neurol 2006;494(3):515-27. http://dx.doi.org/10.1002/cne.20808

Geerling JC, Loewy AD. Sodium depletion activates the aldosterone-46. sensitive neurons in the NTS independently of thrist. Am J Physiol Regul Integr Comp Physiol 2007;292(3):R1338-48. http://dx.doi.org/10.1152/ajpregu.00391.2006

Gomez-Sanchez EP. Dose-response studies of intracerebroventricular 47. infusion of aldosterone in sensitized and non-sensitized rats. J Hypertens 1988;6(6):437-42. http://dx.doi.org/10.1097/00004872-198806000-00002

Peysner K, Henry CA, Malvin RL. Central infusion of aldosterone increases 48. blood pressure by mechanisms independent of Na retention. Clin Exp Hypertens A 1990;12(3):399-414. http://dx.doi.org/10.3109/10641969009074742

Matsuguchi H, Sharabi FM, O'Connor G, Mark AL, Schmid PG. Central 49. mechanisms in DOC-salt hypertensive rats. Clin Exp Hypertens A 1982;4(8):1303-21. http://dx.doi.org/10.3109/10641968209060791

Takeda K, Nakamura Y, Oguro M, Kawasaki S, Havashi J, Tanabe S, et al. 50. Central attenuation of baroreflex precedes the development of hypertension in DOCA-salt-treated rats. Am J Hypertens 1988; 1(3 pt 3):23S-25S. http://dx.doi.org/10.1093/ajh/1.3.23S

Takeda K, Nakamura Y, Havashi J, Kawasaki S, Nakata T, Oguro M, et al. 51. Effects of salt and DOCA on hypothalamic and baroreflex control of blood pressure. Clin Exp Hypertens A 1988;10 (suppl 1):289-99. http://dx.doi.org/10.3109/10641968809075982

Nakamura Y, Takeda K, Nakata T, Havashi J, Kawasaki S, Lee LC, et al. 52. Central attenuation of aortic baroreceptor reflex in prehypertensive DOCA-salt-loaded rats. Hypertension 1988;12(3):259-66. http://dx.doi.org/10.1161/01.HYP.12.3.259

Janiak PC, Lewis SJ, Brody MJ. Role of central mineralocorticoid binding sites 53. in development of hypertension. Am J Physiol 1990;259(5 pt 2):R1025-34.

Van den Berg DT, de Kloet ER, de Jong W. Central effects of mineralocorticoid 54. antagonist RU-28318 on blood pressure of DOCA-salt hypertensive rats. Am J Physiol 1994;267(6 pt 1):E927-33.

Gomez-Sanchez EP, Fort C, Thwaites D. Central mineralocorticoid 55. receptor antagonism blocks hypertension in Dahl S/JR rats. Am J Physiol 1992;262(1 pt 1):E96-9.

Gómez-Sánchez EP. Mineralocorticoid modulation of central control of blood 56. pressure. Steroids 1995;60(1):69-72. http://dx.doi.org/10.1016/0039-128X(94)00004-V

Gomez-Sanchez CE, Zhou MY, Cozza EN, Morita H, Foecking MF, Gomez-57. Sanchez EP. Aldosterone biosynthesis in the rat brain. Endocrinology 1997;138(8):3369-73.

Wang W. Chronic administration of aldosterone depresses baroreceptor 58. reflex function in the dog. Hypertension 1994;24(5):571-5. http://dx.doi.org/10.1161/01.HYP.24.5.571

O’Neil RG. Aldosterone regulation of sodium and potassium transport in 59. the cortical collecting duct. Semin Nephrol 1990;10(4):365-74.

Vinciguerra M, Mordasini D, Vandewalle A, Feraille E. Hormonal and 60. nonhormonal mechanisms of regulation of the NA,K-pump in collecting duct principal cells. Semin Nephrol 2005;25(5):312-21. http://dx.doi.org/10.1016/j.semnephrol.2005.03.006

Huang BS, Wang H, Leenen FHH. Chronic central infusion of aldosterone 61. leads to sympathetic hyperreactivity and hypertension in Dahl S but not Dahl R rats. Am J Physiol Heart Circ Physiol 2005;288(2):H517-24. http://dx.doi.org/10.1152/ajpheart.00651.2004

Yee KM, Struthers AD. Aldosterone blunts the baroreflex response in man. 62. Clin Sci (Lond) 1998;95(6):687-92. http://dx.doi.org/10.1042/CS19980176

Heindl S, Holzschneider J, Hinz A, Sayk F, Fehm HL, Dodt C. Acute effects of 63. aldosterone on the autonomic nervous system and the baroroflex function in healthy humans. J Neuroendocrinol 2006;18(2):115-21. http://dx.doi.org/10.1111/j.1365-2826.2005.01392.x

Monahan KD, Leuenberger UA, Ray CA. Aldosterone impairs 64. baroreflex sensitivity in healthy adults. Am J Physiol Heart Circ Physiol 2007;292(1):H190-7. http://dx.doi.org/10.1152/ajpheart.00622.2006

Roland BL, Li KX, Funder JW. Hybridization histochemical localizations of 65. 11 beta-hydroxysteroid dehydrogenase type 2 in rat brain. Endocrinology 1995; 136(10):4697-700.

imunorreactivity in the rat CNS: distribution and regulation by corticosteroids. J Comp Neurol 1991;313(3):522-38. http://dx.doi.org/10.1002/cne.903130312

Roland BL, Li KX, Funder JW. Glucocorticoid receptor, mineralocorticoid 67. receptors, 11 beta-hydroxysteroid dehydrogenase-1 and -2 expression in rat brain and kidney: in situ studies. Mol Cell Endocrinol 1995;111(1):R1-7. http://dx.doi.org/10.1016/0303-7207(95)03559-P

Doba N, Reis DJ. Acute fulminating neurogenic hypertension produced by 68. brainstem lesions in the rat. Circ Res 1973;32(5):584-93. http://dx.doi.org/10.1161/01.RES.32.5.584

Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR Jr, Lopes OU. Role 69. of medulla oblongata in hypertension. Hypertension 2001;38(3 pt 2):549-54. http://dx.doi.org/10.1161/01.HYP.38.3.549

Arriza JL, Simerly RB, Swanson LW, Evans RM. The neuronal 70. mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1988;1(9):887-900. http://dx.doi.org/10.1016/0896-6273(88)90136-5

Johnson AK, Loewy AD. Circumventricular organs and their role in visceral 71. functions. In: Loewy AD, Spyer, KM, editors. Central regulation of autonomic functions. New York: Oxford University Press: 1990, cap14, p. 247-67.

Pardridge WM, Mietus LJ. Transport of steroid hormones through the rat 72. blood-brain barrier. Primary role of albumin-bound hormone. J Clin Invest 1979;64(1):145-54. http://dx.doi.org/10.1172/JCI109433

Gómez-Sánchez EP. Central hypertensive effects of aldosterone. Front 73. Neuroendocrinol 1997;18(4):440-62. http://dx.doi.org/10.1006/frne.1997.0157

MacKenzie SM, Clark CJ, Fraser R, Gómez-Sánchez CE, Connell JM, Davies 74. E. Expression of 11 beta-hydroxylase and aldosterone synthase genes in the rat brain. J Mol Endocrinol 2000;24(3):321-8. http://dx.doi.org/10.1677/jme.0.0240321

Ye P, Kenyon CJ, MacKenzie SM, Seckl JR, Fraser R, Connell JM et al. 75. Regulation of aldosterone synthase gene expression in the rat adrenal gland and central nervous system by sodium and angiotensina II. Endocrinology 2003;144(8):3321-8. http://dx.doi.org/10.1210/en.2003-0109

Gomez-Sanchez EP, Samuel J, Vergara G, Ahmad N. Effect of 3beta-76. hydroxysteroid dehydrogenase inhibition by trilostane on blood pressure in the Dahl salt-sensitive rat. Am J Physiol Regul Integr Comp Physiol 2005;288(2):R389-93. http://dx.doi.org/10.1152/ajpregu.00441.2004

Talman WT, Perrone MH, Reis DJ. Evidence for L-glutamate as the 77. neurotransmitter of baroreceptor afferent nerve fibers. Science 1980;209(4458):813-5. http://dx.doi.org/10.1126/science.6105709

Loewy AD. Central autonomics pathways. In: Loewy AD, Spyer, KM, editors. 78. Central regulation of autonomic functions. New York: Oxford University Press: 1990, cap6, p. 88-103.

Dampney RA. Functional organization of central pathways regulating the 79. cardiovascular system. Physiol Rev 1994;74(2):323-64.

Wang T, Edwards GL. Differential effects of dorsomedial medulla lesion 80. size on ingestive behavior in rats. Am J Physiol (Integr Comp Physiol) 1997;273(4 pt 2):R1299-308.

Geerling JC, Loewy AD. Aldosterone-sensitive NTS neurons are inhibited 81. by saline ingestion during chronic mineralocorticoid treatment. Brain Res 2006;1115(1):54-64. http://dx.doi.org/10.1016/j.brainres.2006.07.091

Sequeira SM, Geerling JC, Loewy AD. Local inputs to aldosterone-82. sensitive neurons of the nucleus tractus solitarius. Neuroscience 2006; 141(4):1995-2005. http://dx.doi.org/10.1016/j.neuroscience.2006.05.059

Geerling JC, Loewy AD. Aldosterone-sensitive neurons in the nucleus of the 83. solitary tract: efferent projections. J Comp Neurol 2006;498(3):223-50. http://dx.doi.org/10.1002/cne.20993

Geerling JC, Loewy AD. Aldosterone-sensitive neurons in the nucleus of 84. solitary tract: Bidirectional connections with the central nucleus of the amygdala. J Comp Neurol 2006;497(4):646-57. http://dx.doi.org/10.1002/cne.21019

Zhang DM, Epstein AN, Schulkin J. Medial region of the amygdala: involvement 85. in adrenal-steroid-induced salt appetite. Brian Res 1993;600(1):20-6. http://dx.doi.org/10.1016/0006-8993(93)90396-5

Shekhtman E, Geerling JC, Loewy AD. Aldosterone-sensitive neurons in the 86. nucleus of solitary tract: multisynaptic pathway to the nucleus accumbens. J Comp Neurol 2007;501(2):274-89. http://dx.doi.org/10.1002/cne.21245

Voorhies AC, Bernstein IL. Induction and expression of salt appetite: 87. Effects on Fos expression in nucleus accumbens. Behav Brain Res 2006;172(1):90-6. http://dx.doi.org/10.1016/j.bbr.2006.04.020

Contreras RJ, Stetson PW. Changes in salt appetite of the area postrema and 88. the nucleus of the solitary tract in rats. Brain Res 1981;211(2):355-66. http://dx.doi.org/10.1016/0006-8993(81)90707-1

Hyde TM, Miselis RR. Area postrema and adjacent nucleus of the 89. solitary tract in water and sodium balance. Am J Physiol 1984;247(1 pt 2):R173-182.

Curtis KS, Huang W, Sved AF, Verbalis JG, Stricker EM. Impaired 90. osmorregulatory responses in rats with area postrema lesions. Am J Physiol 1999;277(1 pt 2):R209-19.

Edwards GL, Belts TG, Power JD, Johnson AK. Rapid-onset "need-free" 91. sodium appetite after lesions of the dorsomedial medulla. Am J Physiol 1993;264(6 pt 2):R1242-7.

Geerling JC, Sequeira SM, Loewy AD. Increased number of aldosterone-sensitive 92. NTS neurons in Dahl salt-sensitive rats. Brain Res 2005;1065(1-2):142-6. http://dx.doi.org/10.1016/j.brainres.2005.10.044