Insuficiência cardíaca e atividade física: o aumento de enzimas antioxidantes e a melhora da atividade nervosa simpática
Conteúdo do artigo principal
Resumo
A insuficiência cardíaca vem se tornando um problema cada vez maior em saúde pública, e uma das principais causas de internações hospitalares em todo o mundo. Mesmo com os progressos médicos e os avanços tecnológicos atuais, a prevalência da doença aumentou nas últimas cinco décadas. Estudos recentes com animais mostraram que existe uma relação entre hiperatividade simpática na insuficiência cardíaca e aumento do estresse oxidativo sistêmico e central. Este trabalho tem como objetivo analisar, por meio de revisão bibliográfica, os benefícios produzidos pela atividade física em pacientes portadores de insuficiência cardíaca. Foram revisados estudos relacionados ao estresse oxidativo, controle neural da circulação, insuficiência cardíaca e exercício físico entre outubro de 2009 e abril de 2010 nas bases de dados: Medline, Pubmed e Lilacs. As referências eram datadas de 1986 a 2010. Utilizaram-se os seguintes termos: “Oxidative Stress”, “Chronic Heart Failure”, “Baroreflex”, “Nervous System” and “Exercise”. Ratos com insuficiência cardíaca induzida possuem um aumento de espécies reativas de oxigênio na região rostroventrolateral do bulbo, assim como comprometimento na atividade simpática. Alguns estudos sugerem que a atividade física normaliza a atividade simpática por meio de seus mecanismos antioxidantes em seres humanos. Outro aspecto interessante é que a atividade física reduz os níveis plasmáticos de angiotensina II, regula a disfunção do baroreflexo arterial e promove o aumento de enzimas antioxidantes no músculo esquelético de pacientes com insuficiência cardíaca. Portanto, conclui-se que a atividade física é um regime terapêutico não-farmacológico de extrema importância para pacientes com insuficiência cardíaca.
Detalhes do artigo
Referências
Cleland JG, Gemmell I, Khand A, Boddy A. Is the prognosis of heart failure improving? Eur J Heart Fail. 1999;1(3):229-41. http://dx.doi.org/10.1016/S1388-9842(99)00032-X
Anderson B, Waagstein F. Spectrum and outcome of congestive heart failure in a hospitalized population. Am Heart J. 1993;126(3 Pt 1):632-40. http://dx.doi.org/10.1016/0002-8703(93)90414-5
Ho KKL, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: the Framingham study. J Am Coll Cardiol. 1993;22(4 Suppl A):6A-13A http://dx.doi.org/10.1016/0735-1097(93)90455-A
Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart disease and stroke statistics 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117(4):25-146. http://dx.doi.org/10.1161/CIRCULATIONAHA.107.187998
Hunt SA, Baker DW, Chin MH, Cinquegrani MP, Feldman A, Francis GS, et al. ACC/AHA Guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. A report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines Committee to revise the 1995 Guidelines for the evaluation and management of heart failure. Circulation. 2001;104(24):2996-3007. http://dx.doi.org/10.1161/hc4901.102568
Barreto ACP, Drumond Neto C, Mady C, Albuquerque DC, Brindeiro Filho DF, Braile DM, et al. Revisão das II diretrizes da sociedade brasileira de cardiologia para o diagnóstico e tratamento da insuficiência cardíaca. Arq Bras Cardiol. 2002;79(4):1-30.
Francis GS. Neurohumoral mechanisms involved in congestive heart failure. Am J Cardiol. 1985;55(2):15A-21A. http://dx.doi.org/10.1016/0002-9149(85)90791-X
Cohn JN. Abnormalities of peripheral sympathetic nervous system control in congestive heart failure. Circulation. 1990;82(Suppl I):I-59–I-67.
Floras JS. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol. 1993;22(4 Suppl A):72A-84A http://dx.doi.org/10.1016/0735-1097(93)90466-E
Gao L, Wang W, Liu Dongmei, Zucker IH. Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation. 2007;115(24):3095-102. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.677989
Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, et al. Superoxid mediates sympathoexcitation in heart failure: roles of angiotensin II and nad(p)h oxidase. Circ Res. 2004;95:937-44. http://dx.doi.org/10.1161/01.RES.0000146676.04359.64
Kimura Y, Hirooka Y, Sagara Y, Ito K, Kishi T, Shimokawa H, et al. Overexpression of inducible nitric oxide synthase in rostral ventrolateral medulla causes hypertension and sympathoexcitation via an increase in oxidative stress. Circ Res. 2005;96(2):252-60 http://dx.doi.org/10.1161/01.RES.0000152965.75127.9d
Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004;109(19):2357-62. http://dx.doi.org/10.1161/01.CIR.0000128695.49900.12
Zanzinger J, Czachurski J. Chronic oxidative stress in the RVLM modulates sympathetic control of circulation in pigs. Pflugers Arch. 2000;439(4):489-94. http://dx.doi.org/10.1007/s004240050968
Valenti VE, Sato MA, Fereira C, Abreu LC. Neural regulation of cardiovascular system: brain stem areas. Rev Neurocienc. 2007;15(4):317-20.
Cravo SL, Rosa DA, Kalassa F, Korim WS, Hinrichs JM, Ferreira-Neto ML, et al. Os núcleos vasomotores do bulbo e a regulação cardiovascular. Medicina (Ribeirão Preto). 2006;39(1):89-100.
Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol. 1995;26(5):1257-63. http://dx.doi.org/10.1016/0735-1097(95)00332-0
Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Júnior RRC, Lopes OU. Role of the medulla oblongata in hypertension. Hypertension. 2001;38(3 Pt 2):549-54.
Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH. Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: a role for angiotensin II. Circulation. 2000;102(15):1854-62. http://dx.doi.org/10.1161/01.CIR.102.15.1854
Adams V, Linke A, Krankel N, Erbs S, Gielen S, Mobius-Winkler S, et al. Impact of regular physical activity on the nad(p)h oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation. 2005;111(5):555-62. http://dx.doi.org/10.1161/01.CIR.0000154560.88933.7E
Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene. 1999;18(45):6104-11. http://dx.doi.org/10.1038/sj.onc.1203128
Rhee SG, Chang TS, Bae YS, Lee SR, Kang SW. Cellular regulation by hydrogen peroxide. J Am Soc Nephrol. 2003;14(8 Suppl 3):S211-5. http://dx.doi.org/10.1097/01.ASN.0000077404.45564.7E
Ferreira ALA, Matsubara LS. Radicais Livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Rev Ass Med Brasil. 1997;43(1):61-8. http://dx.doi.org/10.1590/S0104-42301997000100014
Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena antioxidants redox reactions and methods for their quantification. Toxicol Pathol. 2002;30(6):620-50. http://dx.doi.org/10.1080/01926230290166724
Frantseva MV, Perez Velazquez JL, Carlen PL. Changes in membrane and synaptic properties of thalamocortical circuitry caused by hydrogen peroxide. J Neurophysiol. 1998;80(3):1317-26.
Pellmar T. Electrophysiological correlates of peroxide damage in guinea pig hippocampus in vitro. Brain Res. 1986;364(2):377-81. http://dx.doi.org/10.1016/0006-8993(86)90851-6
Cardoso LM, Colombari DAS, Menani JV, Chianca Júnior DA, Colombari E. Cardiovascular responses produced by central injection of hydrogen peroxide in conscious rats. Brain Research Bulletin. 2006;71(1-3):37-44. http://dx.doi.org/10.1016/j.brainresbull.2006.07.013
Batlouni M. Insuficiência Cardíaca: da fisiopatologia ao tratamento. Arq Bras Cardiol. 1991;57(1):63-73.
Lage SHG, Kopel L, Carvalho MM. Fisiopatologia da insuficiência cardíaca. In: Sousa AGMR, Mansur AJ. SOCESP Cardiologia, 2º volume. São Paulo: Atheneu, 1996. p. 34-41.
Kaye DM, Lefkovits J, Jennings LG, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. JACC. 1995;26(5)1257-63. http://dx.doi.org/10.1016/0735-1097(95)00332-0
Keith M, Geranmayegan A, Sole MJ, Kurian R, Robinson A, Omran AS, et al. Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol. 1998;31(6):1352-6. http://dx.doi.org/10.1016/S0735-1097(98)00101-6
Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, et al. Superoxido mediates sympathoexcitation in heart failure: roles of angiotensin II and nad(p)h oxidase. Circ Res. 2004;95:937-44. http://dx.doi.org/10.1161/01.RES.0000146676.04359.64
La Rovere MT, Bigger JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet. 1998;351(9101):478-84. http://dx.doi.org/10.1016/S0140-6736(97)11144-8
Mortara A, La Rovere MT, Pinna GD, Prpa A, Maestri R, Febo O, et al. Arterial baroreflex modulation of heart rate in chronic heart failure, clinical and hemodynamic correlates and prognostic implications. Circulation. 1997;96(10):3450-8. http://dx.doi.org/10.1161/01.CIR.96.10.3450
Krieger EM, Brum PC, Negrão CE. State-of-the-art lecture: Influence of exercise training on neurogenic control of blood pressure in spontaneously hypertensive rats. Hypertension. 1999;34(4 Pt 2):720-3. http://dx.doi.org/10.1161/01.HYP.34.4.720
Véras-Silva AS, Mattos KC, Gava NS, Brum PC, Negrão CE, Krieger EM. Low-intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats. Am J Physiol. 1997;273(6 Pt 2):H2627-31.
Bertagnolli M, Camposa C, Schenkela PC, Oliveira VLL, Angelis K, Belló–Klein A, et al. Baroreflex sensitivity improvement is associated with decreased oxidative stress in trained spontaneously hypertensive rat. Journal of Hypertension. 2006;24(12):2437-43. http://dx.doi.org/10.1097/01.hjh.0000251905.08547.17
Tsutsui H, Ide T, Hayashidani S, Suematsu N, Shiomi T, Wen J, et al. Enhanced generation of reactive oxygen species in the limb skeletal muscles from a murine infarct model of heart failure. Circulation. 2001;104(2):134-6. http://dx.doi.org/10.1161/01.CIR.104.2.134
Hambrecht R, Adams V, Gielen S, Linke A, Mobius-Winkler S, Yu J, et al. Exercise intolerance in patients with chronic heart failure and increased expression of inducible nitric oxide synthase in the skeletal muscle. J Am Coll Cardiol. 1999;33(1):174-9. http://dx.doi.org/10.1016/S0735-1097(98)00531-2
Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, et al. Increased myocardial nad(p)h oxidase activity in human heart failure. J Am Coll Cardiol. 2003;41(12):2164-71. http://dx.doi.org/10.1016/S0735-1097(03)00471-6
Doehner W, Schoene N, Rauchhaus M, Lyva-Leon F, Pavitt DV, Reaveley DA, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation. 2002;105(22):2619-24. http://dx.doi.org/10.1161/01.CIR.0000017502.58595.ED
Dixon LJ, Morgan DR, Hughes AM, McGrath LT, El-Sherbeeny NA, Plumb RD, et al. Functional consequences of endothelial nitric oxide synthase uncoupling in congestive cardiac failure. Circulation. 2003;107(13):1725-8. http://dx.doi.org/10.1161/01.CIR.0000066283.13253.78
Mann DL, Reid MB. Exercise training and skeletal muscle inflammation in chronic heart failure: feeling better about fatigue. J Am Coll Cardiol. 2003;42(5):869-72. http://dx.doi.org/10.1016/S0735-1097(03)00847-7
Adams V, Nehrhoff B, Spate U, Linke A, Schulze PC, Baur A, et al. Induction of iNOS expression in skeletal muscle by IL-1β and NFκB activation: an in vitro and in vivo study. Cardiovasc Res. 2002;54:95-104. http://dx.doi.org/10.1016/S0008-6363(02)00228-6
Adams V, Jiang H, Yu J, Mobius-Winkler S, Fiehn E, Linke A, et al. Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol. 1999;33(4):959-65. http://dx.doi.org/10.1016/S0735-1097(98)00626-3
Harrington D, Ankers SD, Chua TP, Webb-People KM, Ponikowski PP, Poole-Wilson PA, et al. Skeletal muscle function and its relation to exercise tolerance in chronic heart failure. J Am Coll Cardiol. 1997;30(7):1758-64. http://dx.doi.org/10.1016/S0735-1097(97)00381-1
Linke A, Adams V, Schulze PC, Erbs S, Gielen S, Fiehn E, et al. Antioxidante effects of exercise training in patients with chronic heart failure: Increase radical scavenger enzyme activity in skeletal muscle. Circulation. 2005;111(14):1763-70. http://dx.doi.org/10.1161/01.CIR.0000165503.08661.E5
Ennezat PV, Malendowicz SL, Testa M, Colombo PC, Cohen-Solal A, Evans T, et al. Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol. 2001;38(1):194-8. http://dx.doi.org/10.1016/S0735-1097(01)01321-3
Francis GS. The relationship of the sympathetic nervous system and the reninangiotensin system in congestive heart failure. Am Heart J. 1989;118(3):642-8. http://dx.doi.org/10.1016/0002-8703(89)90291-3
Francis GS, Cohn JN, Johnson G, Rector TS, Goldman S, Simon A. Plasma norepinephrine, plasma renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II. The V-HeFT VA Cooperative Studies Group. Circulation. 1993;87(6 Suppl):VI40-8.
Kinugawa T, Ogino K, Kitamura H, Saitoh M, Omodani H, Osaki S, et al. Catecholamines, renin-angiotensin-aldosterone system, and atrial natriuretic peptide at rest and during submaximal exercise in patients with congestive heart failure. Am J Med Sci. 1996;312(3):110-7. http://dx.doi.org/10.1097/00000441-199609000-00003
Reid IA. Interactions between Ang II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262(6 Pt 1):E763-78.
Liu JL, Murakami H, Sanderford M, Bishop VS, Zucker IH. Ang II and baroreflex function in rabbits with CHF and lesions of the area postrema. Am J Physiol. 1999;277(1 Pt 2):H342-50.
DiBona GF, Jones SY, Brooks VL. Ang II receptor blockade and arterial baroreflex regulation of renal nerve activity in cardiac failure. Am J Physiol. 1995;269(5 Pt 2):R1189-96.
Rueckschloss U, Quinn MT, Holtz J, Morawietz H. Dose-dependent regulation of nad(p)h oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2002;22(11):1845-51. http://dx.doi.org/10.1161/01.ATV.0000035392.38687.65
Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, et al. Effects of angiotensin II infusion on the expression and function of nad(p)h oxidase and components of nitric oxide/cGMP signaling. Circ Res. 2002;90(4):E58-65. http://dx.doi.org/10.1161/01.RES.0000012569.55432.02
Lassenge B, Clempus RE. Vascular nad(p)h oxidases: specific features, expression, and regulation. Am J Physiol. 2003;285(2):R277-97.
Brooks VL, Osborn JW. Hormonal-sympathetic interactions in long-term regulation of arterial pressure: an hypothesis. Am J Physiol. 1995;268(6 Pt 2):R1343-58.
Grassi G, Seravalle G, Cattaneo BM, Lanfranchi A, Vailati S, Giannattasio C, et al. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation. 1995;92(11):3206-11. http://dx.doi.org/10.1161/01.CIR.92.11.3206
Luchner A, Stevens TL, Borgeson DD, Redfield MM, Bailey JE, Sandberg SM, et al. Angiotensin II in the evolution of experimental heart failure. Hypertension. 1996;28(3):472-7. http://dx.doi.org/10.1161/01.HYP.28.3.472
Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH. Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: a role for angiotensin II. Circulation. 2000;102(15):1854-62. http://dx.doi.org/10.1161/01.CIR.102.15.1854
Georgiou D, Chen Y, Appadoo S, Belardinelli R, Greene R, Parides MK, et al. Cost-effectiveness analysis of long-term moderate exercise training in chronic heart failure. Am J Cardiol. 2001;87(8):984-8; A4.
Belardinelli R, Georgiou D, Cianci G, Purcaro A. Exercise training for patients with chronic heart failure reduced mortality and cardiac events and improved quality of life. West J Med. 2000;172(1):28. http://dx.doi.org/10.1136/ewjm.172.1.28
Roveda F, Middlekauff HR, Rondon MU, Reis SF, Souza M, Nastari L, et al. The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol. 2003;42(5):854-60. http://dx.doi.org/10.1016/S0735-1097(03)00831-3
Larsen AI, Dickstein K. Exercise training in congestive heart failure: a review of the current status. Minerva Cardioangiol. 2005;53(4):275-86.
Rontoyanni VG, Chowienczyk PJ, Sanders TA. Postprandial lipaemia does not affect resting haemodynamic responses but does influence cardiovascular reactivity to dynamic exercise. Br J Nutr. 2010;27:1-9.
Houston MC. The role of cellular micronutrient analysis, nutraceuticals, vitamins, antioxidants and minerals in the prevention and treatment of hypertension and cardiovascular disease. Ther Adv Cardiovasc Dis. 2010;4(3):165-83. http://dx.doi.org/10.1177/1753944710368205