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ABSTRACT
Introduction: Gastric cancer (GC) is the fifth most diagnosed neoplasia and the third 
leading cause of cancer-related deaths. A substantial number of patients exhibit an 
advanced GC stage once diagnosed. Therefore, the search for biomarkers contributes to 
the improvement and development of therapies. Objective: This study aimed to identify 
potential GC biomarkers making use of in silico tools. Methods: Gastric tissue microarray 
data available in Gene Expression Omnibus and The Cancer Genome Atlas Program was 
extracted. We applied statistical tests in the search for differentially expressed genes between 
tumoral and non-tumoral adjacent tissue samples. The selected genes were submitted 
to an in-house tool for analyses of functional enrichment, survival rate, histological 
and molecular classifications, and clinical follow-up data. A decision tree analysis was 
performed to evaluate the predictive power of the potential biomarkers. Results: In total, 
39 differentially expressed genes were found, mostly involved in extracellular structure 
organization, extracellular matrix organization, and angiogenesis. The genes SLC7A8, 
LY6E, and SIDT2 showed potential as diagnostic biomarkers considering the differential 
expression results coupled with the high predictive power of the decision tree models. 
Moreover, GC samples showed lower SLC7A8 and SIDT2 expression, whereas LY6E was 
higher. SIDT2 demonstrated a potential prognostic role for the diffuse type of GC, given 
the higher patient survival rate for lower gene expression. Conclusion: Our study outlines 
novel biomarkers for GC that may have a key role in tumor progression. Nevertheless, 
complementary in vitro analyses are still needed to further support their potential.
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INTRODUCTION
Gastric cancer (GC) is recognized as the fifth most commonly diagnosed malignant 

tumor and the third leading cause of cancer-related deaths. This disease displays a rare 
incidence in adults under 50 years old, being more frequent in men1. Furthermore, due 
to the aging world population, the absolute number of new cases has been increasing 
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every year2. Other factors such as low socioeconomic status, 
smoking, and high intake of salt, nitrites, nitrates, and alcohol are 
also related to GC establishment3,4. Additionally, some studies as-
sociate infections with the Helicobacter pylori bacterium as a GC 
risk factor5,6.

Approximately 80% of patients diagnosed with GC exhibit the 
advanced stage of the disease. This scenario emerges as a result of 
the majority of the patients highlighting unalarming symptoms, 
or even appearing asymptomatic7,8. The overall survival rate of 
the disease is poor since early diagnosis tends to be less frequent9. 
Therefore, investigating potential biomarkers proves a crucial step 
towards the improvement of several medical procedures, includ-
ing screening, estimating cancer development risk, differential di-
agnosis, determining prognosis, predicting responses to therapy, 
and monitoring disease recurrence, among others10.

Multiple biomarker classes exist, ranging from proteins and nu-
cleic acids to antibodies and peptides10. There are distinct meth-
odologies that may be employed to identify potential biomarkers, 
which can be divided into classic approaches (e.g., tumor biology 
and metabolism of the pharmaceutical agent) and modern tech-
nologies (e.g., high-throughput sequencing and gene expression 
arrays)10. In the same manner, GC is also classified through dif-
ferent strategies, often based on tumor histology and gene expres-
sion analysis11,12.

Messenger RNA (mRNA) is considered critical in the progres-
sion and maintenance of tumoral cells. Furthermore, mRNA 
displays a high potential of reflecting cellular phenotypes, since 
it contains a higher quantity of information in the system13. 
Therefore, the use of tools dedicated to analyzing transcripts from 
high-throughput techniques, such as microarrays and RNA-Seq, 
provides a means to investigate potential biomarkers related to the 
diagnosis and prognosis of diverse types of neoplasia14,15.

The term biomarker, according to the National Cancer Institute 
(https://www.cancer.gov/), is applied to “a biological molecule 
that is a sign of a normal or abnormal process, or of a condition 
or disease.” In this sense, multiple biomarker classes exist, ranging 
from proteins and nucleic acids to antibodies and peptides. There 
are distinct methodologies that may be employed in identifying 
potential biomarkers, those being divided into classic approaches 
(e.g., tumor biology and metabolism of the pharmaceutical agent) 
and modern technologies (e.g., high-throughput sequencing and 
gene expression arrays)10.

Gene expression analysis was proposed in the late 90s as 
a complementary method to support morphology-based tu-
moral classification systems, once tumors of the same histotype 
can reach considerably distinct clinical outcomes11,12. One of 
the main challenges posed by the “omics era” is the pursuit of 
biologically relevant information, considering that experimen-
tal techniques like microarrays and RNA-Seq produce large 
volumes of data. At present, various open-access repositories 

collect and store data resulting from those methods, such as 
the Gene Expression Omnibus (GEO)16 ArrayExpress17 and The 
Cancer Genome Atlas (TCGA)18.

The information available in databases is essential in the iden-
tification of novel biomarkers. Besides this, the use of an in silico 
approach contributes to the class determination as well as ge-
nomic architecture characterization of each cancer19,20. Several 
studies have made use of bioinformatics procedures in the search 
for potential biomarkers. Sartor et  al.21 for instance, identified 
the TULP3 gene as a prospective biomarker for pancreatic can-
cer, verifying that high transcriptional levels of TULP3 may fulfill 
a fundamental role in tumor progression. In another work, Xue 
et al.22 investigated the potential of the KIF4A gene as a prognostic 
and diagnostic biomarker for breast cancer. 

Among current medical research, biomarker studies show high 
promise for therapy improvement and cost reduction. The  es-
tablishment of correlations between potential biomarkers and 
diseases can render new tools, both for diagnosis and treatment 
adjustment for patients23.

From this perspective, the objective of the present paper was to 
identify potential GC biomarkers by using in silico techniques and 
public repository data.

METHODS

Data acquisition
Gene expression data were obtained from the GEO and TCGA 

repositories. Every selected dataset consists of information from 
patients diagnosed with gastric adenocarcinoma, including both 
tumoral tissue (GC) and non-tumoral adjacent tissue (NT). 
Two datasets were selected from the GEO database: GSE3333524 
(25 GC and 25 NT samples) and GSE54129 (111 GC and 21 NT 
samples). As for the TCGA database, data from the TCGA-STAD 
study18 (415 GC and 35 NT samples) were obtained.

Data normalization
The raw gene expression data from studies GSE54129 

(GPL570) and GSE33335 (GPL5175) was normalized by employ-
ing the Robust Multi-array Average technique, implemented in 
affy and oligo packages from the BioConductor repository. For 
the STAD-TCGA study, RNA-Seq data were preprocessed with 
the TCGAbiolinks package, also obtained from BioConductor. 
To avoid biased expression values, STAD-TCGA data were nor-
malized and filtered, so that only samples situated in the inter-
quartile range (25-75%) were considered. Afterward, the data 
from all studies were transformed into a logarithmic scale, for 
gene expression comparison between GC and non-tumoral (NT) 
tissue samples. A principal component analysis was then applied 
to identify variance distribution and filter biased samples.
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Microarray probe mapping was required exclusively for GEO-
derived data since in this repository every gene carries a probe-spe-
cific code. The gene-to-probe-code relation is available as a separate 
archive, which is standardized according to the platform used by 
the microarray technique. Consequently, a new probe mapping 
based on the GPL5175 platform annotation system was created for 
the GSE33335 study with the corresponding genes, once the data 
could not be directly imported to R. All data preprocessing and 
analyses were performed in R v.3.4.3 statistical software.

Differential expression and gene selection
For both databases, the limma package was used for the differ-

ential expression analysis25 with a selected value of logFC of 1.5. 
Benjamini-Hochberg correction was used for multiple compari-
sons. In the GSE54129 study, JetSet scoring26 was used to select 
the probe that best represents a gene. More specifically, given that 
a single gene can be measured by a probeset, JetSet provides indi-
vidual gene mapping to the probe that best represents its expres-
sion. In the following procedure, the VennDiagram package27 was 
employed to overlap the studies and pinpoint the common genes 
between them. This main intersection of differentially expressed 
genes then underwent a functional enrichment analysis conduct-
ed with the cluster profile package28.

Analysis of biomarker potential
The selected genes were submitted to an in-house developed 

tool to conduct analyses of functional enrichment, survival rate, 
Laurén and World Health Organization (WHO) histological clas-
sifications, TCGA molecular classification, and clinical follow-up 
data. Furthermore, a decision tree algorithm was utilized to per-
form a complementary analysis of GEO data, conducted with the 
Orange Data Mining v.3.26.0 software29.

RESULTS

Gene selection and potential biomarkers
In total, 39 genes were found to be differentially expressed con-

sidering the intersection of GSE33335 and GSE54129 studies, 
with a defined limit of p-value <0.05 and a LogFC cut-off of 1.5 
(Figure 1). In addition, we were able to discern which genes ex-
hibited a higher potential to be used as biomarkers, those being: 
SLC7A8, LY6E, and SIDT2. The complete gene list in conjunction 
with the statistical results from the expression analysis can be 
found in Supplemental Material I (Figure 1).

Functional enrichment analysis
To determine the biological function of the 39 differentially 

expressed genes a functional enrichment analysis was conduct-
ed (Figure 2). This approach was able to uncover the cellular 

pathways involved with the selected genes: (i) extracellular struc-
ture organization (12 genes); (ii) extracellular matrix organization 
(12 genes); and (iii) angiogenesis (10 genes). Additionally, a p-
value of < 0.0005 was obtained for these 3 functions.

DISCUSSION
In the conducted analyses, SLC7A8 expression presented signifi-

cant statistical differences between tumoral and non-tumoral adja-
cent tissue samples. While tumor samples displayed lower expression 
values and a wider distribution range, non-tumoral ones were char-
acterized by a higher SLC7A8 expression and a narrower distribution 
range (Figure 3). The same result was observed in the Laurén and 
WHO histological classifications, as well as for the TCGA molecular 
classification. On the other hand, no statistical significance was found 
for the differential expression of this gene in tumoral staging and the 
survival rate of patients (Supplemental Material II).

The constructed decision tree models support the notion that 
SLC7A8 expression values can operate as a classification attribute. 
The resultant model for the GSE33335 dataset determines that: 
“If the expression value is lower or equal to 4.86, then the sample 
will be classified as tumoral”; and “If the expression value is higher 
than 4.86, the sample will be classified as non-tumoral”. Similarly, 
the model for the GSE54129 dataset found that: “If the expression 
value is lower or equal to 9.0, then the sample will be classified as 
tumoral”; and “If the expression value is higher than 9.0, the sam-
ple will be classified as non-tumoral”. A graphical visualization of 
the trees, in association with their confusion matrix and statisti-
cal metrics used in the evaluation of the models, can be found in 
Supplemental Material III.

The SLC7A8 gene (solute carrier family 7 member 8), or LAT2, 
is an amino acid transporter of the L type and not dependent30 on 
Na+. The SLC7A8 expression level has been related to other neopla-
sias. In lung and breast cancers, for example, a high gene expression 
was associated with a higher survival rate of patients and favorable 

Figure 1: Venn Diagram of differentially expressed genes from 
studies GSE33335 and GSE54129.
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prognostics31,32. On top of that, the overexpression of SLC7A8 in 
breast cancer was found to be involved in tumor suppression32. 
However, in contrast with the previously reported results, overex-
pression of the SLC7A8 gene has been indicated in basal cell carci-
noma, a type of skin cancer, and neuroendocrine tumor tissues33,34.

Contrary to the previous gene, the LY6E gene (Lymphocyte 
Antigen 6 Family Member E) displayed higher expression values in 
GC than in NT samples (Figure 4). The same result was observed in 
the Laurén and WHO histological classifications, as well as the TCGA 
molecular classification. As for tumor staging and patient survival, 
there was no statistical significance in the differential expression of 

the gene (Supplemental Material IV). Furthermore, the models ob-
tained from decision trees (GSE33335 and GSE54129) specify that 
expression values equal to and below 6.7 return non-tumoral sam-
ples, whereas values above this threshold classify as tumor samples. 
The graphical tree visualization, confusion matrix, and statistical 
evaluation metrics are available in Supplemental Material V.

The high expression levels for the LY6E gene in tumor samples en-
countered in this paper are in accord with results obtained in a work 
by Lv et al.35. In their research, the authors verified, through microar-
ray assays, that the respective gene was overexpressed in GC sam-
ples when compared to non-tumoral cases. In addition, their study 

Figure 2: Gene ontology functional enrichment analysis.

Figure 3: Comparison of the SLC7A8 gene expression between tumoral (Gastric cancer) and non-tumoral adjacent tissue samples. 
Relative gene expressions were plotted for a) GSE33335; b) GSE54129; and c) TCGA data.

A B C
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evaluated the immunohistochemical profile of LY6E, revealing that 
78.7% of GC samples presented proteic overexpression. Even more, 
the overexpression was found to be correlated to tumor grading and 
staging35. Much like LY6E, other LY6 family genes are positively regu-
lated in tumoral tissue, unlike non-tumoral tissue samples. In this 
background, the elevated expression of the LY6 gene family has been 
related to an unfavorable prognosis in distinct neoplasias36.

The last potential biomarker here highlighted is the SIDT2 gene, 
which presented lower expression in GC samples than in the NT 
group (Figure 5). The same result carries over when considering 
Laurén and WHO histological classes and TCGA molecular classifi-
cation. As for tumor staging, no statistical significance was found in 
the differential expression of this gene (Supplemental Material VI).

Regarding the survival rate of patients, in a general manner, 
no significant difference was verified in the STAD-TCGA study 
(Supplemental Material VI). However, when considering the 
Laurén histological classification, SIDT2 expression for the dif-
fuse type of GC had statistical significance in the survival rate of 
patients. In this particular case, the high gene expression in GC is 
associated with a lower patient survival rate (Figure 6A). The ROC 

curve (Figure 6B) for survival rate shows an AUC value of 65,5% in 
the cases of high SIDT2 expression. Nguyen et al.37 have described 
the role of Sidt2 in tumor progression for lung and intestinal adeno-
carcinoma, using animal models. In his work, the author observed 
that mice without Sidt2 expression would show a reduction in tu-
mor progression together with an increase in survival rate37.

The decision tree analysis demonstrates that different expres-
sion levels of SIDT2 can be used as a classifying feature. For the 
GSE33335 dataset: “If the expression value is lower or equal to 5.34, 
then the sample will be classified as tumoral”; and “If the expres-
sion value is higher than 5.34, the sample will be classified as non-
tumoral”. Whereas for the GSE54129 dataset: “If the expression 
value is lower or equal to 10.2, then the sample will be classified 
as tumoral”; and “If the expression value is higher than 10.2, the 
sample will be classified as non-tumoral”. A graphical rendering of 
the tree models, in addition to their confusion matrices, and statis-
tical evaluation metrics are available in Supplemental Material VII.

The SIDT2 protein mediates RNA transport to lysosomes, promot-
ing a degradation process known as RNAutophagy37,38. In agreement 
with the NT and GC expression results found in our paper, Beck et al.39 

Figure 4: Comparison of the LY6E gene expression between tumoral (Gastric cancer) and non-tumoral adjacent tissue samples. Relative 
gene expressions were plotted for a) GSE33335; b) GSE54129; and c) TCGA data.

A B C

Figure 5: Comparison of the SIDT2 gene expression between tumoral (Gastric cancer) and non-tumoral adjacent tissue samples. Relative 
gene expressions were plotted for a) GSE33335; b) GSE54129; and c) TCGA data.

A B C
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Figure 6: Comparison of survival rates based on SIDT2 expression for the diffuse type of GC: a) Patient survival rate, b) ROC curve.

A B

identified high expression of SIDT2 transcripts in healthy human tis-
sue including the stomach, pancreas, spinal cord, prostate, testicles, and 
placenta. Moreover, they detail that SIDT2 displays a negative regulation 
level in tumor tissue in comparison to the corresponding healthy tissue. 
Similarly, Brady et al.40 report that the SIDT2 gene is found underex-
pressed in a variety of mice and human tumors. Even more, the authors 
delineate its action as a TP53-dependent tumor suppressor. In this re-
gard, Nguyen et al.37 when investigating the role of Sidt2 on mice lung 
adenocarcinoma tumorigenesis, reported that animals with Sidt2 defi-
ciency developed significantly fewer tumors and showed a substantial 
reduction in total tumor yield. These results evidence the tumor sup-
pressive action of Sidt2 and can explain the survival rate of our findings.

The use of in silico tools enabled the identification of novel bio-
markers for GC that may have a role in the disease progression. 

Our study outlines three possible diagnostic biomarkers, the genes 
SLC7A8, LY6E, and SIDT2, given that they displayed a statistically 
significant differential expression between tumoral and non-tumoral 
adjacent tissue samples. Furthermore, the SIDT2 gene exhibited a 
potential role as a prognostic GC biomarker for the diffuse type of 
cancer, considering the association between the high gene expression 
and the lower survival rate.

Considering the diverse types of GC, studies that identify potential 
diagnostic or prognostic biomarkers histology-specific are impor-
tant to the contribution of the improvement of the knowledge of the 
GC. These three genes also appear related to other kinds of neoplasia 
in the literature. However, complementary in vitro analyses are still 
needed to provide further support to these genes as potential bio-
markers for gastric cancer.
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