The action of Metaloproteinases in the Atherosclerotic Diseases

Main Article Content

Álvaro Luís Müller da Fonseca
Fernanda Washington de Mendonça Lima
Ricardo David Couto

Abstract

Cardiovascular diseases represent the main cause of morbidity and mortality in the world and are epidemic events involving the atherosclerosis and coronary artery disease in particular. There are a wide variety of factors and markers associated with the development and aggravation of these diseases, including atherosclerosis. Subclinical Atherosclerosis can be determined by serum inflammatory markers present in the atherogenic process. Such markers can take a direct or indirect indicator role on atherosclerotic cardiovascular disease. The extracellular matrix metalloproteinases are biomarkers closely related into modifying and remodeling of vascular wall and other tissues and can represent predictive value patterns to support diagnosis. This review discusses the function and types of matrix metalloproteinases and its use as an indicator of support for the diagnosis of atherosclerosis.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fonseca, Álvaro L. M. da, Lima, F. W. de M., & Couto, R. D. (2014). The action of Metaloproteinases in the Atherosclerotic Diseases. ABCS Health Sciences, 39(3). https://doi.org/10.7322/abcshs.v39i3.654
Section
Review Articles

References

Ferraz MLF. Avaliação morfológica da aterosclerose em aortas de pacientes autopsiados. Tese (Doutorado) – Universidade Federal do Triângulo Mineiro, Uberaba, 2008.

Borges LF, Touat Z, Leclercq A, Zen AA, Jondeau G, Franc B, et al. Tissue diffusion and retention of metalloproteinases in ascending aortic aneurysms and dissections. Hum Pathol. 2009;40(3):306-13.

http://dx.doi.org/10.1016/j.humpath.2008.08.002

Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem. 1999;274(31):21491-4. http://dx.doi.org/10.1074/jbc.274.31.21491

Opdenakker G, Van den Steen PE, Van Damme J. Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol. 2001;22(10):571-9. http://dx.doi.org/10.1016/S1471-4906(01)02023-3

Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90(3):251-62.

Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827-39. http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D

Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteinases. Amino Acids. 2011;41(2):271-90. http://dx.doi.org/10.1007/s00726-010-0689-x

Sang QX. Complex role of matrix metalloproteinases in angiogenesis. Cell Res. 1998;8(3):171-7. http://dx.doi.org/10.1038/cr.1998.17

Rutschow S, Li J, Schultheiss HP, Pauschinger M. Myocardial proteinases and matrix remodeling in inflammatory heart disease. Cardiovasc Res. 2006;69(3):646-56. http://dx.doi.org/10.1016/j.cardiores.2005.12.009

Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14(17):2123-33. http://dx.doi.org/10.1101/gad.815400

Miyage SPH. Análise in vitro da expressão de proteínas da matriz extracelular (ECM) e de metaloproteinases de matriz (MMPs) em células- tronco da polpa dentária humana. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2008.

Fang C, Wen G, Zhang L, Lin L, Moore A, Wu S, Ye S, Xiao Q. An important role of matrix metalloproteinase-8 in angiogenesis in vitro and in vivo. Cardiovasc Res. 2013;99(1):146-55. http://dx.doi.org/10.1093/cvr/cvt060

Xiao Q, Zhang F, Lin L, Fang C, Wen G, Tsai TN, et al. Functional role of Matrix Metalloproteinase-8 in Stem/Progenitor cell migration and their recruitment into atherosclerotic lesions. Circ Res. 2013;112:35-47. http://dx.doi.org/10.1161/CIRCRESAHA.112.274019

Lima ES, Couto RD. Estrutura, metabolismo e funções fisiológicas da lipoproteína de alta densidade. J Bras Patol Med Lab. 2006;42(3):169-78. http://dx.doi.org/10.1590/S1676-24442006000300005

Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. An Rev Immunol. 2009;27:165-97. http://dx.doi.org/10.1146/annurev.immunol.021908.132620

Siefert SA, Sarkar R. Matrix metalloproteinases in vascular physiology and disease. Vascular. 2012;20(4):210-6. http://dx.doi.org/10.1258/vasc.2011.201202

Torzewski M, Suriyaphol P, Paprotka K, Spath L, Ochsenhirt V, Schmitt A, et al. Enzymatic modification of low-density lipoprotein in the arterial wall: a new role for plasmin and matrix metalloproteinases in atherogenesis. Arterioscler Thrombos Vasc Biol. 2004;24(11):2130-6. http://dx.doi.org/10.1161/01.ATV.0000144016.85221.66

Kalela A. Factors affecting serum matrix metalloproteinase-9 with special reference to atherosclerosis. Thesis (Doctoral) – Medical School of the University of Tampere. 2002.

Libby P. Inflammation and atherosclerosis. Nature. 2002;420(6917):868-74. http://dx.doi.org/10.1038/nature01323

Inoue T, Kato T, Takayanagi K, Uchida T, Yaguchi I, Kamishirado H, et al. Circulating matrix metalloproteinase-1 and -3 in patients with and acute coronary syndrome. Am J Cardiol. 2003;92:1461-4. http://dx.doi.org/10.1016/j.amjcard.2003.08.061

Yu WH, Yu S, Meng Q, Brew K, Woessner JF Jr. TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem. 2000;275(40):31226-32. http://dx.doi.org/10.1074/jbc.M000907200

Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005;85(1):1-31. http://dx.doi.org/10.1152/physrev.00048.2003

Fonseca ALM. Metaloproteinases de matriz e incorporação de colesterol na lipoproteína de alta densidade (HDL) na doença carotídea. Tese (Doutorado) – Fundação Oswaldo Cruz, Salvador, 2012. p. 93.

Mallat Z. Inflammation, and atherosclerotic lesion growth matrix metalloproteinase-8 and the regulation of blood pressure, vascular. Circ Res. 2009;105:827-9. http://dx.doi.org/10.1161/CIRCRESAHA.109.208595

Karapanagiotidis GT, Antonitsis P, Charokopos N, Foroulis CN, Anastasiadis K, Rouska E, et al. Serum levels of matrix metalloproteinases -1,-2,-3 and -9 in thoracic aortic diseases and acute myocardial ischemia. J Cardiothoracic Surg. 2009;4:59. http://dx.doi.org/10.1186/1749-8090-4-59

Jackson ZS, Dajnowiec D, Gotlieb AI, Langille BL. Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler Thrombos Vasc Biol. 2005;25(5):957-62. http://dx.doi.org/10.1161/01.ATV.0000161277.46464.11

Sebastian L, Mach F, Montecucco F. Role of Matrix Metalloproteinase-8 in Atherosclerosis. Mediat Inflamm. 2013;(2013):1-6. http://dx.doi.org/10.1155/2013/659282

Beaudeux JL, Giral P, Bruckert E, Foglietti MJ, Chapman MJ. Métalloprotéases matricielles et athérosclérose. Perspectives thérapeutiques. Ann Biol Clin. 2003;61(2):147-58.

Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, Shapiro SD, et al. Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci U S A. 1996;93(18):9748-53. http://dx.doi.org/10.1073/pnas.93.18.9748

Djurić T, Zivković M, Stanković A, Kolaković A, Jekić D, Selaković V, Alavantić D. Plasma levels of matrix metalloproteinase-8 in patients with carotid atherosclerosis. J Clin Lab Anal. 2010;24(4):246-51. http://dx.doi.org/10.1002/jcla.20393

Wang KF, Huang PH, Chiang CH, Hsu CY, Leu HB, Chen JW, Lin SJ. Usefulness of plasma matrix metalloproteinase-9 level in predicting future coronary revascularization in patients after acute myocardial infarction. Coron Artery Dis. 2013;24(1):23-8. http://dx.doi.org/10.1097/MCA.0b013e32835aab4a

Lubos E, Schnabel R, Rupprecht HJ, Bickel C, Messow CM, Prigge S, et al. Prognostic value of tissue inhibitor of metalloproteinase-1 for cardiovascular death among patients with cardiovascular disease: results from the AtheroGene Study. Eur Heart J. 2006;27(2):150-6. http://dx.doi.org/10.1093/eurheartj/ehi582

Romero JR, Vasan RS, Beiser AS, Polak JF, Benjamin EJ, Wolf PA, et al. Association of carotid artery atherosclerosis with circulating biomarkers of extracellular matrix remodeling: the Framingham Offspring Study. J Stroke Cerebrovasc Dis. 2008;17(6):412-7. http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2008.06.002

Schwartz SM, Galis ZS, Rosenfeld ME, Falk E. Plaque rupture in humans and mice. Arterioscler Thrombos Vasc Biol. 2007;27:705-13. http://dx.doi.org/10.1161/01.ATV.0000261709.34878.20

Xin JIG, He-Song ZG, Yi G, Zhi-Bin Z, Bing-Shan TG, Fu-Kang LI. The expression of matrix metalloproteinases-9, transforming growth factor-β1 and transforming growth factor- receptor in human atherosclerotic plaque and their relationship with plaque stability. Chin Med J. 2004;117(12):1825-9.

Wilson D, Massaeli H, Russell JC, Pierce GN, Zahradka P. Low matrix metalloproteinase levels precede vascular lesion formation in the JCR:LA-cp rat. Mol Cell Biochem. 2003;249(1-2):151-5. http://dx.doi.org/10.1023/A:1024747008288

Gaubatz JW, Ballantyne CM, Wasserman BA, Max HE, Chambless LE, Boerwinkle E, Hoogeveen RC. Association of circulating matrix metalloproteinases with carotid artery characteristics: the atherosclerosis risk in Communities Carotid MRI Study. Arterioscler Thrombos Vasc Biol. 2010;30(5):1034-42. http://dx.doi.org/10.1161/ATVBAHA.109.195370

Motterle A, Xiao Q, Kiechl S, Pender SL, Morris GE, Willeit J, Caulfield MJ, Ye S. Influence of matrix metalloproteinase-12 on fibrinogen level. Atherosclerosis. 2012;220(2):351-4. http://dx.doi.org/10.1016/j.atherosclerosis.2011.11.003

Libby, P. Collagenases and cracks in the plaque. J Clin Invest. 2013;123(8):3201-3. http://dx.doi.org/10.1172/JCI67526

Siasos G, Tousoulis D, Kioufis S, Oikonomou E, Siasou Z, Limperi M, Papavassiliou Ag, Stefanadis C. Inflammatory mechanisms in atherosclerosis: the impact of matrix metalloproteinases. Curr Top Med Chem. 2012;12(10):1132-48. http://dx.doi.org/10.2174/1568026611208011132

Sahara M, Ikutomi M, Morita T, Minami Y, Nakajima T, Hirata Y, et al. Deletion of Angiotensin-converting Enzyme 2 Promotes the Development of Atherosclerosis and Arterial Neointima Formation. Cardiovasc Res. 2014;101(2):236-46. http://dx.doi.org/10.1093/cvr/cvt245.

Guimarães DA, Rizzi E, Ceron CS, Martins-Oliveira A, Gerlach RF, Santos JET. Inibição de metaloproteinases da matriz extracelular: uma possível estratégia terapêutica na hipertensão arterial? Rev Bras Hipertens. 2010;17(14):226-30.

Silva DC, Gerchiaro G. Relações patofisiológicas entre estresse oxidativo e arteriosclerose. Qim Nova. 2011;34(2):300-5. http://dx.doi.org/10.1590/S0100-40422011000200024

Araújo RVS, Silva FO, Melo-Júnior MR; Porto AL. Metaloproteinases: aspectos fisiopatológicos sistêmicos e sua importância na cicatrização. Rev Ciênc Méd Biol. 2011;10(1):82-8.

Silva JM, Saldanha C. Endotélio Arterial e Aterotrombogénese II: disfunção endotelial e desenvolvimento das lesões aterotrombóticas. Rev Port Cardiol. 2006;25(12)1159-86.