The importance of optimal 25-hydroxyvitamin D levels in the glycemic control of older adults with type 2 Diabetes Mellitus: Data from the study on aging and longevity EELO

Main Article Content

Cristina Eunice Okuyama
Denise Cristine de Oliveira
Karen Barros Parron Fernandes
Regina Célia Poli Frederico
Susana Nogueira Diniz
Viviane de Souza Pinho Costa
Audrey de Souza Marquez

Abstract

Introduction: Optimal serum levels of vitamin D are of great importance, especially in populations with comorbidities such as Diabetes Mellitus (DM). Objective: The study evaluated the relationship between hypovitaminosis D and glycemic control in older adults with type 2 DM. Methods: Cross-sectional and prospective study, part of the EELO project (Study on Aging and Longevity), conducted in Southern Brazil. Glycated hemoglobin (diabetes ≥6.5%) and serum levels of vitamin D (25(OH)D) were evaluated. Hypovitaminosis D was determined using cutoff points <20 and <30 ng/mL). Multivariate logistic regression was used to assess the risk of having uncontrolled DM. Results: Of the 120 older adults included in the study, aged between 60 and 87 years, 74.2% were women, 66.7% used hypoglycemic medications and 75.8% exhibited uncontrolled diabetes. An inverse correlation was observed between the levels of 25(OH)D and glycated hemoglobin (rS=-0.19, p=0.037), suggesting that low levels of vitamin D are associated with poor glycemic control in diabetic individuals. The prevalence of hypovitaminosis D when using the cutoff points of <20 and <30 ng/mL were 34.2% and 75.0%, respectively. The odds ratio (OR) analysis showed that individuals with 25(OH)D<20ng/mL have almost 4 times more risk of having uncontrolled DM (OR:3.94; CI95%:1.25-12.46, p=0.02) when compared to the older adults with sufficient levels of vitamin D. Conclusion: The results indicate that the optimal serum levels currently recommended for 25(OH)D should preferably be 30 ng/mL or higher to contribute to better glycemic control in older adults with type 2 DM.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
Okuyama, C. E., Oliveira, D. C. de, Fernandes, K. B. P., Poli-Frederico, R. C., Diniz, S. N., Costa, V. de S. P., & Marquez, A. de S. (2022). The importance of optimal 25-hydroxyvitamin D levels in the glycemic control of older adults with type 2 Diabetes Mellitus: Data from the study on aging and longevity EELO. ABCS Health Sciences, 47, e022222. https://doi.org/10.7322/abcshs.2020128.1583
Section
Original Articles

References

1. Lips P, Eekhoff M, van Schoor N, Oosterwerff M, Jongh R, Krul-Poel Y, et al. Vitamin D and type 2 diabetes. J Steroid Biochem Mol Biol. 2017;173:280-5. https://doi.org/10.1016/j.jsbmb.2016.11.021

2. Caccamo D, Ricca S, Currò M, Ientile R. Health risks of hypovitaminosis D: a review of new molecular insights. Int J Mol Sci. 2018;19(3):892. https://doi.org/10.3390/ijms19030892

3. Vishlaghi N, Lisse TS. Exploring vitamin D signalling within skin cancer. Clin Endocrinol. 2020;92(4):273-81. https://doi.org/10.1111/cen.14150

4. Issa CM. Vitamin D and type 2 diabetes mellitus. Adv Exp Med Biol. 2017;996:193-205. https://doi.org/10.1007/978-3-319-56017-5_16

5. Bornstedt ME, Gjerlaugsen N, Pepaj M, Bredahl MKL, Thorsby PM. Vitamin D increases glucose stimulated insulin secretion from insulin producing beta cells (INS1E). Int J Endocrinol Metab. 2019;17(1):e74255. https://doi.org/10.5812/ijem.74255

6. Manna P, Jain SK. Vitamin D up-regulates glucose transporter 4 (GLUT4) translocation and glucose utilization mediated by cystathionine-γ-lyase (CSE) activation and H2S formation in 3T3L1 adipocytes. J Biol Chem. 2012;287(50):42324-32. https://doi.org/10.1074/jbc.M112.407833

7. Castro AJ, Frederico MJ, Cazarolli LH, Bretanha LC, Tavares LC, Buss ZS, et al. Betulinic acid and 1,25(OH)₂ vitamin D₃ share intracellular signal transduction in glucose homeostasis in soleus muscle. Int J Biochem Cell Biol. 2014;48:18-27. https://doi.org/10.1016/j.biocel.2013.11.020

8. Greco EA, Lenzi A, Migliaccio S. Role of Hypovitaminosis D in the Pathogenesis of Obesity-Induced Insulin Resistance. Nutrients. 2019;11(7):1506. https://doi.org/10.3390/nu11071506

9. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185-200. https://doi.org/10.7150/ijms.10001

10. Maeda SS, Borba VZ, Camargo MB, Silva DM, Borges JL, Bandeira F, et al. Recommendations of the Brazilian Society of Endocrinology and Metabology (SBEM) for the diagnosis and treatment of hypovitaminosis D. Arq Bras Endocrinol Metabol. 2014;58(5):411-33. https://doi.org/10.1590/0004-2730000003388

11. Ong KL, Cheung BM, Wong LY, Wat NM, Tan KC, Lam KS. Prevalence, treatment, and control of diagnosed diabetes in the U.S. National Health and Nutrition Examination Survey 1999-2004. Ann Epidemiol. 2008;18(3):222-9. https://doi.org/10.1016/j.annepidem.2007.10.007

12. Agarwal N, Mithal A, Kaur P, Dhingra V, Godbole MM, Shukla M. Vitamin D and insulin resistance in postmenopausal Indian women. Indian J Endocrinol Metab. 2014;18(1):89-93. https://doi.org/10.4103/2230-8210.126583

13. Branco JMCR, Smoraog DC, Bentes CM, Cardoso Netto C, Marinheiro LPF. Association between vitamin D status and glycemic profile in postmenopausal women with type 2 diabetes. Diabetes Metab Syndr. 2019;13(3):1685-8. https://doi.org/10.1016/j.dsx.2019.03.040

14. Li X, Liu Y, Zheng Y, Wang P, Zhang Y. The Effect of vitamin d supplementation on glycemic control in type 2 diabetes patients: a systematic review and meta-analysis. Nutrients. 2018;10(3):375. https://doi.org/10.3390/nu10030375

15. Christakos S, Li S, De La Cruz J, Bikle DD. New developments in our understanding of vitamin metabolism, action and treatment. Metabolism. 2019;98:112-20. https://doi.org/10.1016/j.metabol.2019.06.010

16. Cho NH, Shaw JE, Karuranga S, Huang Y, Fernandes JDR, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. https://doi.org/10.1016/j.diabres.2018.02.023

17. World Health Organization (WHO). World report on ageing and health 2015. available from: https://www.who.int/ageing/events/world-report-2015-launch/en/.

18. Spirduso WW. Physical dimensions of aging. Barueri: Manole, 2005.

19. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Inter Med. 2009;150(9):604–12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

20. Little RR, Rohlfing CL, Sacks DB. Status of Hemoglobin A1c measurement and goals for improvement: from chaos to order for improving diabetes care. For the National Glycohemoglobin Standardization Program (NGSP) Steering Committee. Clin Chem. 2011;57(2):205-14. https://doi.org/10.1373/clinchem.2010.148841

21. Avci E, Demir S, Aslan D, Nar R, Senol H. Assessment of Abbott architect 25-OH vitamin D assay in different levels of vitamin D. J Med Biochem. 2020;39(1):100-7. https://doi.org/10.2478/jomb-2019-0039

22. Hutchinson K, Healy M, Crowley V, Louw M, Rochev Y. Verification of Abbott 25-OH-vitamin D assay on the architect system. Pract Lab Med. 2017;7:27-35. https://doi.org/10.1016/j.plabm.2017.01.001

23. Sociedade Brasileira de Diabetes (SBD). Diretrizes da Sociedade Brasileira de Diabetes: 2019-2020. São Paulo: Clannad, 2019.

24. Ferreira CES, Maeda SS, Batista MC, Lazaretti-Castro M, Vasconcellos LS, Madeira M, et al. Consensus – reference ranges of vitamin D [25(OH)D] from the Brazilian medical societies. Brazilian Society of Clinical Pathology/Laboratory Medicine (SBPC/ML) and Brazilian Society of Endocrinology and Metabolism (SBEM). J Bras Patol Med Lab. 2017;53(6):377-81. https://doi.org/10.5935/1676-2444.20170060

25. Neumann LTV, Albert SM. Aging in Brazil. Gerontologist. 2018;58(4):611-17. https://doi.org/10.1093/geront/gny019

26. Instituto Brasileiro de Geografia e Estatística (IBGE). Projeções da população do Brasil e Unidades da Federação por sexo e idade: 2010-2060. Available from: https://www.ibge.gov.br/estatisticas/sociais/populacao/9109-projecao-da-populacao.html?=&t=resultados.

27. Quartuccio M, Buta B, Kalyani RR. Comparative effectiveness for glycemic control in older adults with diabetes. Curr Geri Rep. 2017;6(3):175-86. https://doi.org/10.1007/s13670-017-0215-z

28. Giustina A, Bouillon R, Binkley N, Sempos C, Adler RA, Bollerslev J, et al. Controversies in Vitamin D: A statement from the Third International Conference. JBMR Plus. 2020;4(12):e10417. https://doi.org/10.1002/jbm4.10417

29. Zostautiene I, Jorde R, Schirmer H, Mathiesen EB, Njølstad I, Løchen ML, et al. Genetic variations in the vitamin D receptor predict type 2 diabetes and myocardial infarction in a community-based population: the Tromsø study. PLoS One. 2015;10(12):e0145359. https://doi.org/10.1371/journal.pone.0145359

30. Szymczak-Pajor I, Śliwińska A. Analysis of association between vitamin D deficiency and insulin resistance. Nutrients. 2019;11(4): E794. https://doi.org/10.3390/nu11040794

31. Zoppini G, Galletti A, Targher G, Brangani C, Pichiri I, Negri C, et al. Glycated haemoglobin is inversely related to serum vitamin D levels in type 2 diabetic patients. Plos One. 2013;8(12):e82733. https://doi.org/10.1371/journal.pone.0082733

32. Kajbaf F, Mentaverri R, Diouf M, Fournier A, Kamel S, Lalau JD. The association between 25-hydroxyvitamin D and hemoglobin a1c levels in patients with type 2 diabetes and stage 1–5 chronic kidney disease. Int J Endocrinol. 2014;2014:142468. https://doi.org/10.1155/2014/142468

33. Morró M, Vilà L, Franckhauser S, Mallol C, Elias G, Ferré T, et al. Vitamin D Receptor Overexpression in b-Cells Ameliorates Diabetes in Mice. Diabetes. 2020;69(5):927-39. https://doi.org/10.2337/db19-0757

34. Fernandes KBP, Santos JPM, Fernandes MTP, Santos MCF, Silva RA, Poli-Frederico RC. Tamanho do efeito In: Manual de pesquisa clínica aplicada à saúde. V.1. São Paulo: Edgar Blucher, 2020.

35. Kostoglou-Athanassiou I, Athanassiou P, Gkountouvas A, Kaldrymides P. Vitamin D and glycemic control in diabetes mellitus type 2. Ther Adv Endocrinol Metab. 2013;4(4):122-8. https://doi.org/10.1177/2042018813501189

36. Sempos CT, Heijboer AC, Bikle DD, Bollerslev J, Bouillon R, Brannon PM, et al. Vitamin D assays and the definition of hypovitaminosis D: results from the First International Conference on Controversies in Vitamin D. Br J Clin Pharmacol. 2018;84(10):2194-207. https://doi.org/10.1111/bcp.13652

37. Giustina A, Adler RA, Binkley N, Bouillon R, Ebeling PR, Lazaretti-Castro M, et al. Controversies in vitamin D: summary statement from an international conference. J Clin Endocrinol Metab. 2019;104(2):234-40. https://doi.org/10.1210/jc.2018-01414

38. Gorham ED, Garland CF, Burgi AA, Mohr SB, Zeng K, Hofflich H, et al. Lower prediagnostic serum 25-hydroxyvitamin D concentration is associated with higher risk of insulin-requiring diabetes: a nested case–control study. Diabetologia. 2012;55(12):3224-7. https://doi.org/10.1007/s00125-012-2709-8

39. Hu Z, Chen J, Sun X, Wang L, Wang A. Efficacy of vitamin D supplementation on glycemic control in type 2 diabetes patients: a meta-analysis of interventional studies. Medicine (Baltimore). 2019;98(14):e14970. https://doi.org/10.1097/MD.0000000000014970

40. Pittas A, Dawson-Hughes B, Staten M. Vitamin D supplementation and prevention of type 2 diabetes. N Engl J Med. 2019;381(6):1785-6. https://doi.org/10.1056/NEJMoa1900906