Virulence, biofilm formation ability and antimicrobial resistance of Staphylococcus aureus isolated from cell phones of university students

Main Article Content

Gabrielle Messias de Souza
Mariana Francelino Almeida de Jesus
Maria Vitória de Souza Ferreira
Karolinny Cristiny de Oliveira Vieira
Wilson Romero Nakagaki
Eliana Peresi Lordelo
Valeria Pereira Cataneli
Lizziane Kretli Winkelstroter

Abstract

Introduction: Contamination of cell phones can contribute to the dissemination of pathogens in the community and/or hospital environment. Objective: To characterize Staphylococcus aureus strains isolated from cell phones of university students. Methods: Samples were collected from 100 cell phones. Detection of genes associated with virulence factors such as biofilm formation (icaA and icaD), enterotoxins production (SEA, SEB, SEC, and SED), and resistance to methicillin (mecA and mecC) was performed in S. aureus isolates by PCR. Typing mecA gene performed by multiplex PCR. Susceptibility to antimicrobials and biofilm formation rate also evaluated by using disk diffusion test and crystal violet staining. Results: S. aureus was present in 40% of the total samples and about 70% of them belonged to Nursing students. Of the isolates, 85% presented resistance to penicillin and 50% were classified as moderate biofilm producers. In addition, 92.5% of isolates contained the gene icaA and 60% of the gene icaD. Approximately 25% of the isolates presented the mecA gene. Typing of the mecA gene showed the presence of staphylococcal chromosome cassette SCCmec I and c III respectively in 20% and 10% of the isolates. 70% of the samples could not be typed by the technique. Regarding the enterotoxins, the most prevalent gene was SEA (30%) followed by the SEC gene (2.5%). The presence of SED and SEB genes not observed in any of the isolates. Conclusion: The cleaning and periodic disinfection of cell phones can contribute to the reduction of the risk of nosocomial infection.

Downloads

Download data is not yet available.

Article Details

How to Cite
Souza, G. M. de, Jesus, M. F. A. de, Ferreira, M. V. de S., Vieira, K. C. de O., Nakagaki, W. R., Lordelo, E. P., Cataneli, V. P., & Winkelstroter, L. K. (2022). Virulence, biofilm formation ability and antimicrobial resistance of Staphylococcus aureus isolated from cell phones of university students. ABCS Health Sciences, 47, e022203. https://doi.org/10.7322/abcshs.2020154.1608
Section
Original Articles

References

1. Selim HS, Abaza AF. Microbial contamination of mobile phones in a health care setting in Alexandria, Egypt. GMS Hyg Infect Control. 2015;10:1-9. http://doi.org/10.3205/dgkh000246

2. Chang CH, Chen SY, Lu JJ, Chang CJ, Chang Y, Hsieh PH. Nasal colonization and bacterial contamination of mobile phones carried by medical staff in the operating room. PLoS One. 2017;12(5):e0175811. http://doi.org/10.1371/journal.pone.0175811

3. Pillet S, Berthelot P, Gagneux-Brunon A, Mory O, Gay C, Viallon A, et al. Contamination of healthcare workers' mobile phones by epidemic viroses. Clin Microbiol Infect. 2016;22(5):456.e1-6. http://doi.org/10.1016/j.cmi.2015.12.008

4. Bamigboye BT, Olowe OA, Taiwo SS. Phenotypic and molecular identification of vancomycin resistance in clinical Staphylococcus aureus isolates in Osogbo, Nigeria. Eur J Microbiol Immunol. 2018;8(1):25-30. http://doi.org/10.1556/1886.2018.00003

5. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Therap. 2015;40(4):277-83.

6. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain H. A review on antibiotic resistance: alarm bells are ringing. Cureus. 2017;9(6):e1403. http://doi.org/10.7759/cureus.1403

7. Costa KAD, Ferenz M, Silveira SM, Mellezi AF. Formação de biofilmes bacterianos em diferentes superfícies de indústrias de alimentos. Rev Inst Laticínios Cândido Tostes. 2016;71:72-85. https://doi.org/10.14295/2238-6416.v71i2.512

8. Graziano MU, Graziano KU, Pinto FMG, Bruna CQM, Souza RQ, Lascala CA. Eficácia da desinfecção com álcool 70% (p/v) de superfícies contaminadas sem limpeza prévia. Rev Latino-Am Enfermagem. 2013;21(2):618-23. https://doi.org/10.1590/S0104-11692013000200020

9. Garcia CTP, Saleh DMFVB, Sasagawa SM, Mimica LMI, Ueda SMY. Pesquisa de micro-organismos em canetas esferográficas utilizadas por estudantes universitários. Arq Med Hosp Fac Cienc. 2012;57(1):6-10.

10. Margarido CA, Boasi TMC, Mota VS, Silvai CKM, Poveda VN. Contaminação microbiana de punhos de jalecos durante a assistência à saúde. Rev Bras Enferm 2014;64(1):127-32. https://doi.org/10.5935/0034-7167.20140017

11. Zakai A, Mashat A, Abumohssin A, Samarkandi A, Almaghrab B, Barradah H, et al. Bacterial contamination of cell phones of medical students at King Abdulaziz University, Jeddah, Saudi Arabia. J Microsc Ultrastruct. 2016;4(3):143-6. https://doi.org/10.1016/j.jmau.2015.12.004

12. Mendoça RGM, Olival GS, Mimica LMJ, Navarini A, Paschoalotti MA, Chieffi PP, et al. Potencial infeccioso do transporte público de passageiros da cidade de São Paulo. Arq Med Hosp Fac Cienc Med Santa Casa São Paulo. 2008;53(2):53-7.

13. Martineau F, Picard FJ, Roy PH, Ouellette M, Bergeron MG. Species-specific and ubiquitous-dna-based assays for rapid identification of Staphylococcus aureus. J Clin Microbiol. 1998;36(3):618-23. https://doi.org/10.1128/JCM.36.3.618-623.1998

14. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI supplement M100. Pennsylvania: Wayne, PA: Clinical and Laboratory Standards Institute, 2019.

15. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18(3):268-81. https://doi.org/10.1111/j.1469-0691.2011.03570.x

16. Tiba MR, Nogueira GP, Leite DS. Study on virulence factors associated with biofilm formation and phylogenetic groupings in Escherichia coli strains isolated from patients with cystitis. Rev Soc Bras Med Trop. 2009;42(1):58-62. https://doi.org/10.1590/S0037-86822009000100012

17. Sambrook J, Russell DW. Molecular cloning - a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, 2001.

18. Milheiriço C, Oliveira DC, Lencastre H. Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51(9):3374-7. https://doi.org/10.1128/AAC.00275-07

19. Bodena D, Teklemarian Z, Balakrishnan S, Tesfa T. Bacterial contamination of mobile phones of health professionals in Eastern Ethiopia: antimicrobial susceptibility and associated factors. Trop Med Health. 2019;47:5. https://doi.org/10.1186/s41182-019-0144-y

20. Carvalho MSM, Andrade DFR, Sousa AFL, Valle ARMC, Freitas DRJ, Nascimento GC, et al. Nasal colonization with Staphylococcus aureus in nursing students: ground for monitoring. Rev Bras Enferm. 2016;69(9):1046-51. https://doi.org/10.1590/0034-7167-2016-0210

21. Silva ECBF, Samico TM, Cardoso RR, Rabelo MA, Bezerra Neto AM, Melo FL, et al. Colonization by Staphylococcus aureus among the nursing staff of a teaching hospital in Pernambuco. Rev Esc Enferm USP. 2012;46(1):132-7. https://doi.org/10.1590/S0080-62342012000100018

22. Iyamba JLM, Takaisi-Kikune NM, Dulanto S, Dehay JP. Study of the Adhesion of Clinical Strains of Staphylococcus aureus on an Abiotic Surface Using the Biofilm Ring Test. J Biomat Nanobiotechnol. 2012;3(4A):547-56. https://doi.org/10.4236/jbnb.2012.324057

23. Xu Z, Liang Y, Lin S, Chen D, Li B, Lin L, et al. Crystal Violet and XTT Assays on Staphylococcus aureus Biofilm Quantification, Curr Microbiol. 2016;73(4):474-82. https://doi.org/10.1007/s00284-016-1081-1

24. Marks LR, Reddinger RM, Hakasson AP. Biofilm formation enhances fomite survival of Streptococcus pneumoniae and Streptococcus pyogenes. Infect Immun. 2014;82(3):1141-6. https://doi.org/10.1128/IAI.01310-13

25. Taha M, Kohnen C, Mallya S, Kou Y, Zapata A, Ramirez-Arcos S. Comparative characterization of the biofilm-production abilities of Staphylococcus epidermidis isolated from human skin and platelet concentrates. J Med Microbiol. 2018;67(2):190-7. https://doi.org/10.1099/jmm.0.000673

26. Alberts B, Johnson A, Walter P. Biologia molecular da célula. Porto Alegre: Artmed, 2017.

27. Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8(6):423-35. https://doi.org/10.1038/nrmicro2333

28. ECBF Silva, Samico TM, Cardoso RR, Rabelo MA, Bezerra Neto AM, Melo FL, et al. Colonization by Staphylococcus aureus among the nursing staff of a teaching hospital in Pernambuco, Rev Esc Enferm USP. 2012;46(1):128-32. https://doi.org/10.1590/S0080-62342012000100018

29. Moosavian M, Shahin M, Navidifar T, Torabipour M. Typing of staphylococcal cassette chromosome mec encoding methicillin resistance in Staphylococcus aureus isolates in Ahvaz, Iran. New Microbes New Infect. 2017;21:90-4. https://doi.org/10.1016/j.nmni.2017.11.006

30. Martins A, Cunha MLRS. Methicillin resistance in Staphylococcus aureus and coagulase-negative staphylococci: epidemiological and molecular aspects. Microbiol Immunol. 2007;51(9):787-95. https://doi.org/10.1111/j.1348-0421.2007.tb03968.x

31. Lentz SAM, Rivas PM, Cardoso MRI, Morales DL, Centenaro FC, Martins AF. Bacillus cereus as the main casual agent of foodborne outbreaks in Southern Brazil: data from 11 years. Cad Saúde Pública. 2018;34:e00057417. https://doi.org/10.1590/0102-311x00057417

32. Chaves TF. Revisão teórica das técnicas utilizadas na detecção de enterotoxinas estafilocócicas. Cienc Equatorial. 2012;2(1):2-14.