Occurrence of blaKPC gene in clinical isolates of Pseudomonas aeruginosa from Brazil

Main Article Content

Jailton Lobo da Costa Lima
Rafael Matos Ximenes
Maria Amélia Vieira Maciel


Pseudomonas aeruginosa is one of the main microorganisms causing healthcare-related infections. The rise of carbapenem-resistant P. aeruginosa (CRPA) strains has become a serious public health problem. Dissemination of the enzyme Klebsiella pneumoniae carbapenemase (KPC) encoded by the blaKPC gene cause the inactivation of β-lactam antibiotics being one of the mechanisms involved in this resistance. Given the above, the objective of this review was to evaluate the occurrence of the blaKPC gene in clinical isolates of P. aeruginosa in Brazil. For this, the online databases used were: Lilacs, SciELO and PubMed. The search for articles included articles published from 2012 to 2020, using the following keywords: blaKPC (KPC), Pseudomonas aeruginosa, and Brazil (in Portuguese and English). Initially, 30 publications eligible for inclusion in this review were identified. After the first analysis, two articles were excluded due to duplication. Subsequently, titles and abstracts were evaluated, 15 articles were excluded because they did not fit the theme, and 13 articles that met the inclusion criteria were read in full. In these studies, the presence of the blaKPC gene was investigated in 566 clinical isolates of P. aeruginosa in Brazil, with 86 (15.2%) positive samples found. Pernambuco was the state with the highest number of articles and positive samples, respectively, 38.5% (5/13), and 65.1% (56/86). This study reinforces the need to investigate the occurrence of this gene in all regions of the country in CRPA, aiming to understand how its dissemination occurs and to promote prevention and therapeutic strategies.


Download data is not yet available.

Article Details

How to Cite
Lima, J. L. da C., Ximenes, R. M., & Maciel, M. A. V. (2022). Occurrence of blaKPC gene in clinical isolates of Pseudomonas aeruginosa from Brazil. ABCS Health Sciences, 47, e022306. https://doi.org/10.7322/abcshs.2020198.1646
Review Articles


Lupo A, Haenni M, Madec JY. Antimicrobial Resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol Spectr. 2018;6(3). http://doi.org/10.1128/microbiolspec.ARBA-0007-2017

Khan HA, Ahmad A, Mehboob R. Nosocomial infections and their control strategies. J Trop Biomed. 2015;5(7):505-9. https://doi.org/10.1016/j.apjtb.2015.05.001

Lima JLC, Alves LR, Paz JNP, Rabelo MA, Maciel MAV, Morais MMC. Analysis of biofilm production by clinical isolates of Pseudomonas aeruginosa from patients with ventilator-Associated pneumonia. Rev Bras Ter Intensiva. 2017;29(3):310-6. https://doi.org/10.5935/0103-507x.20170039

Trubiano JA, Padiglione AA. Nosocomial infections in the intensive care unit. Anaesth Intensive Care Med. 2015;16(12):598-602. https://doi.org/10.1016/j.mpaic.2015.09.010

Russotto V, Cortegiani A, Raineri SM, Giarratano A. Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J Intensive Care. 2015;3:54. http://doi.org/10.1186/s40560-015-0120-5

Brink AJ. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr Opin Infect Dis. 2019;32(6):609-16. http://doi.org/10.1097/QCO.0000000000000608

Zhang D, Cui K, Wang T, Shan Y, Dong H, Feng W, et al. Risk factors for carbapenem-resistant pseudomonas aeruginosa infection or colonization in a chinese teaching hospital. J Infect Dev Ctries. 2018;12(8):642-8. https://doi.org/10.3855/jidc.10150

McCann E, Srinivasan A, Deryke CA, Ye G, Depestel DD, Murray J, et al. Carbapenem-Nonsusceptible Gram-Negative Pathogens in ICU and Non-ICU Settings in US Hospitals in 2017: a multicenter study. Open Forum Infect Dis. 2018;5(10):241. http://doi.org/10.1093/ofid/ofy241

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-92. https://doi.org/10.1016/j.biotechadv.2018.11.013

Azimi A, Peymani A, Pour PK. Phenotypic and molecular detection of metallo-β-lactamase-producing Pseudomonas aeruginosa isolates from patients with burns in Tehran, Iran. Rev Soc Bras Med Trop. 2018;51(5):610-15. https://doi.org/10.1590/0037-8682-0174-2017

Santos ICO, Andrade NFP, Conceição Neto OC, Costa BS, Marques EA, Souza CMR, et al. Epidemiology and antibiotic resistance trends in clinical isolates of Pseudomonas aeruginosa from Rio de janeiro - Brazil: Importance of mutational mechanisms over the years (1995-2015). Infect Genet Evol. 2019;73:411-5. https://doi.org/10.1016/j.meegid.2019.05.015

Villegas MV, Lolans K, Correa A, Kattan JN, Lopez JA, Quinn JP. First Identification of Pseudomonas aeruginosa Isolates Producing a KPC-Type Carbapenem-Hydrolyzing β-Lactamase. Antimicrob Agents Chemother. 2007;51(4):1553-5. https://doi.org/10.1128/AAC.01405-06

Jácome PRLA, Alves LR, Cabral AB, Lopes ACS, Vieira Maciel MA. First report of KPC-producing Pseudomonas aeruginosa in Brazil. Antimicrob Agents Chemother. 2012;56(9):4990. https://doi.org/10.1128/AAC.00699-12

Ramírez DG, Nicola F, Zarate S, Relloso S, Smayevsky J, Arduino S. Emergence of Pseudomonas aeruginosa with KPC-type carbapenemase in a teaching hospital: an 8-year study Printed in Great Britain. J Med Microbiol. 2013;62(10):1565-70. https://doi.org/10.1099/jmm.0.059923-0

Morales-Espinosa R, Delgado G, Espinosa LF, Isselo D, Mendéz JL. Fingerprint Analysis and Identification of Strains ST309 as a Potential High Risk Clone in a Pseudomonas aeruginosa Population Isolated from Children with Bacteremia in Mexico City. Microbial Frontal. 2017;8:313. https://doi.org/10.3389/fmicb.2017.00313

Wolter DJ, Khalaf N, Robledo IE, Vázquez JG, Santé IM, Aquino EE, et al. Surveillance of carbapenem-resistant pseudomonas aeruginosa isolates from Puerto Rican Medical Center Hospitals: Dissemination of KPC and IMP-18 β-lactamases. Antimicrob Agents Chemother. 2009;53(4):1660-4. https://doi.org/10.1128/AAC.01172-08

Akpaka PE, Swanston WH, Ihemere HN, Correa A, Torres JA, Tafur JD, et al. Emergence of KPC-Producing Pseudomonas aeruginosa in Trinidad and Tobago. J Clinical Microbiol. 2009;47(8):2670-1. https://doi.org/10.1128/JCM.00362-09

Poirel L, Nordmann P, Lagrutta E, Cleary T, Munoz-Price L. Emergence of KPC-Producing Pseudomonas aeruginosa in the United States. Antimicrob Agents Chemother. 2010;54(7):3072. https://doi.org/10.1128/AAC.00513-10

Walkty A, Alexander DC, Karlowsky JA, Nichol K, Embil J. Report of a KPC-producing Pseudomonas aeruginosa isolate in Canada. J Antimicrob Chemother. 2019;74(6):1748-9. https://doi.org/10.1093/jac/dkz064

Hagemann JB, Pfennigwerth N, Gatermann SG, von Baum H, Essig A. KPC-2 carbapenemase-producing Pseudomonas aeruginosa reaching Germany. J Antimicrob Chemother. 2018;73(7):1812-4. https://doi.org/10.1093/jac/dky105

Pérez-Vázquez M, Sola-Campoy PJ, Zurita AM, Ávila A, Gómez-Bertomeu F, Solís S, et al. Carbapenemase-producing Pseudomonas aeruginosa in Spain: interregional dissemination of the high-risk clones ST175 and ST244. Inter J Antimicrob Agents. 2020;56(1):106026. https://doi.org/10.1016/j.ijantimicag.2020.106026

Ge C, Wei Z, Jiang Y, Shen P, Yu Y, Li L. Identification of KPC-2-producing Pseudomonas aeruginosa isolates in China. J Antimicrob Chemother. 2011;66(5):1184-6. https://doi.org/10.1093/jac/dkr060

Paul D, Chanda DD, Maurya AP, Mishra S, Chakravarty A, Sharma GD, et al. Co-Carriage of bla KPC-2 and bla NDM-1 in Clinical Isolates of Pseudomonas aeruginosa Associated with Hospital Infections from India. PLoS One . 2015;10(12):e0145823. https://doi.org/10.1371/journal.pone.0145823

Lari AR, Azimi L, Rahbar M, Alaghehbandan R, Sattarzadeh-Tabrizi M. First report of Klebsiella pneumonia carbapenemase-producing Pseudomonas aeruginosa isolated from burn patients in Iran: phenotypic and genotypic methods. GMS Hyg Infect Control. 2014;9(1):Doc06. https://doi.org/10.3205/dgkh000226

Halat DH, Moubareck CA. The Current Burden of Carbapenemases : Review of Significant Properties and Dissemination among. Antibiotics (Basel). 2020;9(4):186. https://doi.org/10.3390/antibiotics9040186

Telling K, Laht M, Brauer A, Remm M, Kisand V, Maimets M, et al. Multidrug resistant Pseudomonas aeruginosa in Estonian hospitals. BMC Infect Dis. 2018;18(1):513. https://doi.org/10.1186/s12879-018-3421-1

Bassetti M, Peghin M, Vena A, Giacobbe DR. Treatment of Infections Due to MDR Gram-Negative Bacteria. Front Med (Lausane). 2019;6:74. https://doi.org/10.3389/fmed.2019.00074

Fritzenwanker M, Imirzalioglu C, Herold S, Wagenlehner FM, Zimmer KP, Chakraborty T. Treatment Options for Carbapenem-Resistant Gram-Negative Infections. Dtsch Arztebl Int. 2018;115(20-21):345-52. https://doi.org/10.3238/arztebl.2018.0345

Karaiskos I, Lagou S, Pontikis K, Rapti V, Poulakou G. The “Old” and the “New” antibiotics for MDR Gram-negative pathogens: For whom, when, and how. Front Public Health. 2019;7:151. https://doi.org/10.3389/fpubh.2019.00151

Lima AVA, Silva SM, Nascimento Júnior JAA, Correia MTS, Luz AC, Leal-Balbino TC, et al. Occurrence and Diversity of Intra- and Interhospital Drug-Resistant and Biofilm-Forming Acinetobacter baumannii and Pseudomonas aeruginosa. Microb Drug Resist. 2020;26(7):802-14. https://doi.org/10.1089/mdr.2019.0214

Galetti R, Andrade LN, Varani AM, Darini ALC. A phage-like plasmid carrying blaKPC-2 Gene in carbapenem-resistant Pseudomonas aeruginosa. Front Microbiol. 2019;10:572. https://doi.org/10.3389/fmicb.2019.00572

Scavuzzi AML, Beltrão EMB, Firmo EF, Oliveira EM, Beserra FG, Lopes ACS. Emergence of blaVIM-2, blaNDM-1, blaIMP-7 and blaGES-1 in blaKPC-2-harbouring Pseudomonas aeruginosa isolates in Brazil. J Glob Antimicrob Resist. 2019;19:181-2. https://doi.org/10.1016/j.jgar.2019.09.009

Santos ICO, Albano RM, Asensi MD, Carvalho-Assef APA. Draft genome sequence of KPC-2-producing Pseudomonas aeruginosa recovered from a bloodstream infection sample in Brazil. J Glob Antimicrob Resist. 2018;15:99-100. https://doi.org/10.1016/j.jgar.2018.08.021

Paula-Petroli SB, Campana EH, Bocchi M, Bordinhão T, Picão RC, Yamada-Ogatta SF, et al. Early detection of a hypervirulent KPC-2-producing Pseudomonas aeruginosa ST235 in Brazil. J Glob Antimicrob Resist. 2018;12:153-4. https://doi.org/10.1016/j.jgar.2018.01.014

Chaves L, Tomich LM, Salomão M, Leite GC, Ramos J, Martins RR, et al. High mortality of bloodstream infection outbreak caused by carbapenem-resistant P. aeruginosa producing SPM-1 in a bone marrow transplant unit. J Med Microbiol. 2017;66(12):1722-9. https://doi.org/10.1099/jmm.0.000631

Jácome PRLA, Alves LR, Jácome-Júnior AT, Silva MJB, Lima JLC, Araújo PSR, et al. Detection of blaspm-1, blakpc, blatem and blactx-m genes in isolates of pseudomonas aeruginosa, acinetobacter spp. And klebsiella spp. from cancer patients with healthcare-associated infections. J Med Microbiol. 2016;65(7):658-65. https://doi.org/10.1099/jmm.0.000280

Galetti R, Andrade LN, Chandler M, Mello Varani A, Darini ALC. New small plasmid harboring blaKPC-2 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(5):3211-4. https://doi.org/10.1128/AAC.00247-16

Carrara-Marroni FE, Cayô R, Streling AP, Da Silva ACR, Palermo RL, Romanin P, et al. Emergence and spread of KPC-2-producing Pseudomonas aeruginosa isolates in a Brazilian teaching hospital. J Glob Antimicrob Resist. 2015;3(4):304-6. https://doi.org/10.1016/j.jgar.2015.07.002

Cavalcanti FLS, Mirones CR, Paucar ER, Montes LA, Leal-Balbino TC, Morais MMC, et al. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant pseudomonas aeruginosa clinical isolates from Recife, Brazil. Mem Inst Oswaldo Cruz. 2015;110(8):1003-9. https://doi.org/10.1590/0074-02760150233

Rizek C, Fu L, Santos LC, Leite G, Ramos J, Rossi F, et al. Characterization of carbapenem-resistant Pseudomonas aeruginosa clinical isolates, carrying multiple genes coding for this antibiotic resistance. Ann Clin Microbiol Antimicrob. 2014;13:43. https://doi.org/10.1186/s12941-014-0043-3

Nordmann P, Poirel L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin Infect Dis. 2019;69(Suppl 7):S521-8. https://doi.org/10.1093/cid/ciz824

Dehbashi S, Tahmasebi H, Alikhani MY, Keramat F, Arabestani MR. Distribution of Class B and Class A β-Lactamases in Clinical Strains of Pseudomonas aeruginosa: Comparison of Phenotypic Methods and High-Resolution Melting Analysis (HRMA) Assay. Infect Drug Resist. 2020;30(13):2037-52. https://doi.org/10.2147/IDR.S255292

Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev. 2020;33:e00047-19. https://doi.org/10.1128/CMR.00047-19