In silico evaluation of the gene expression profile of syndecan-4 in different breast tumor subtypes

Main Article Content

Carina Mucciolo Melo
Laura Romanholi de Oliveira Pereira
Ariane Carolina Ferreira
Mariane de Barros Ribeiro da Silva
Maria Aparecida da Silva Pinhal

Abstract

Introduction: Breast cancer is one of the main causes of death in women. Luminal tumors A and B show good response with hormonal treatments, tumors that overexpress HER-2 can be treated with monoclonal antibodies, whereas triple-negative tumors have few treatments available because they present low or absent expression of hormone receptors and HER-2, in addition, they present worse tumor progression. Syndecans are heparan sulfate proteoglycans that have the function of interacting with growth factors, cytokines, and extracellular matrix, thus modulating important processes in tumor progression. Objective: Analyze the expression of syndecan-4 in different subtypes of breast tumors. Methods: Bioinformatics is a useful tool for the study of new biomarkers. In the present study, the TCGA database (514 patients) and Metabric (1,898 patients) were analyzed using the cBioportal software. Gene expression data were analyzed by RNA-Seq and Microarray from biopsies of breast tumors. Results: An alteration in syndecan-4 gene expression was observed among the different subtypes of breast tumors. Patients with a triple-negative tumor had decreased expression for syndecan-4 in both databases. Conclusion: Syndecan-4 is a potential biomarker for breast tumor prognosis since decreased expression of syndecan-4 is related to triple-negative breast cancer.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
Melo, C. M., Pereira, L. R. de O., Ferreira, A. C., Silva, M. de B. R. da, & Pinhal, M. A. da S. (2024). In silico evaluation of the gene expression profile of syndecan-4 in different breast tumor subtypes. ABCS Health Sciences, 49, e024202. https://doi.org/10.7322/abcshs.2021293.2016
Section
Original Articles

References

Brasil. Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA). Atlas de mortalidade por câncer. Rio de Janeiro: Ministério da Saúde, 2021.

Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin. 2017;67(2):93-9. https://doi.org/10.3322/caac.21388

Giuliano AE, Connolly JL, Edge SB, Mittendorf EA, Rugo HS, Solin LJ, et al. Breast Cancer-Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(4):290-303. https://doi.org/10.3322/caac.21393

Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, et al. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis. 2017;8(9):e3045. https://doi.org/10.1038/cddis.2017.440

von Minckwitz G, Procter M, Azambuja E, Zardavas D, Benyunes M, Viale G, et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N Engl J Med. 2017;377(2):122-31. https://doi.org/10.1056/NEJMoa1703643

Onyeisi JOS, Lopes CC, Götte M. Syndecan-4 as a pathogenesis factor and therapeutic target in cancer. Biomolecules. 2021;11(4):503. https://doi.org/10.3390/biom11040503

Afratis NA, Nikitovic D, Multhaupt HAB, Theocharis AD, Couchman JR, Karamanos NK. Syndecans - key regulators of cell signaling and biological functions. FEBS J. 2017;284(1):27-41. https://doi.org/10.1111/febs.13940

Gondelaud F, Ricard-Blum S. Structures, and interactions of syndecans. FEBS J. 2019;286(15):2994-3007. https://doi.org/10.1111/febs.14828

Lendorf ME, Manon-Jensen T, Kronqvist P, Multhaupt HAB, Couchman JR. Syndecan-1 and syndecan-4 are independent indicators of breast carcinoma. J Histochem Cytochem. 2011;59(6):615-29. https://doi.org/10.1369/0022155411405057

Jechorek D, Haeusler-Pliske I, Meyer F, Roessner A. Diagnostic value of syndecan-4 protein expression in colorectal cancer. Pathol Res Pract. 2021; 222:153431. https://doi.org/10.1016/j.prp.2021.153431

Santos NJ, Barquilha CN, Barbosa IC, Macedo RT, Lima FO, Justulin LA, et al. Syndecan family gene and protein expression and their prognostic values for prostate cancer. Int J Mol Sci. 2021;22(16):8669. https://doi.org/10.3390/ijms22168669

Sanchez C, Lambert C, Dubuc JE, Bertrand B, Pap T, Henrotin Y. Syndecan-4 is increased in the osteoarthritic knee, but not hip or shoulder, articular hypertrophic chondrocytes. Cartilage. 2021;13(2 suppl):862S-71. https://doi.org/10.1177/1947603519870855

Herum KM, Romaine A, Wang A, Melleby AO, Strand ME, Pacheco J, et al. Syndecan-4 protects the heart from the profibrotic effects of thrombin-cleaved osteopontin. J Am Heart Assoc. 2020;9(3):e013518. https://doi.org/10.1161/JAHA.119.013518

Hallberg G, Andersson E, Naessén T, Ordeberg GE. The expression of syndecan-1, syndecan-4, and decorin in healthy human breast tissue during the menstrual cycle. Reprod Biol Endocrinol. 2010;8:35. https://doi.org/10.1186/1477-7827-8-35

Lambert J, Makin K, Akbareian S, Johnson R, Alghamdi AAA, Robinson SD, et al. ADAMTS-1 and syndecan-4 intersect in the regulation of cell migration and angiogenesis. J Cell Sci. 2020;133(7):jcs235762. https://doi.org/10.1242/jcs.235762

Oh ES, Woods A, Couchman JR. Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C. J Biol Chem. 1997;272(13):8133-6. https://doi.org/10.1074/jbc.272.13.8133

Gopal S, Bober A, Whiteford JR, Multhaupt HA, Yoneda A, Couchman JR. Heparan sulfate chain valency controls syndecan-4 function in cell adhesion. J Biol Chem. 2010;285(19):14247-58. https://doi.org/10.1074/jbc.M109.056945

Vuong TT, Reine TM, Sudworth A, Jenssen TG, Kolset SO. Syndecan-4 is a major syndecan in primary human endothelial cells in vitro, modulated by inflammatory stimuli and involved in wound healing. J Histochem Cytochem. 2015;63(4):280-92. https://doi.org/10.1369/0022155415568995

Elfenbein A, Simons M. Syndecan-4 signaling at a glance. J Cell Sci. 2013;126(Pt 17):3799-804. https://doi.org/10.1242/jcs.124636

Goicoechea SM, Zinn A, Awadia SS, Snyder K, Garcia-Mata R. A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells. J Cell Sci. 2017;130(6):1064-77. https://doi.org/10.1242/jcs.195552

Yadav S, Barton M, Nguyen NT. Stretching induces overexpression of RhoA and Rac1 GTPases in breast cancer cells. Adv Biosyst. 2020;4(2):e1900222. https://doi.org/10.1002/adbi.201900222