High-fat diet and fructose drink stimulate apoptotic signaling via cleaved caspase-3 protein in hepatic cells of rats

Main Article Content

Lorena Silva Freire
Franciely Alves da Silva
Thiago da Rosa Lima
Eudes Thiago Pereira Ávila
Amilcar Sabino Damazo
Mayara Peron Pereira
Stephanie Figueiredo Santos
Suelem Aparecida de França Lemes
Bibiana Mozzaquatro Gai
Nair Honda Kawashita

Abstract

Introduction: The intake of a high-fat, high-fructose diet during childhood may lead to obesity, hepatic steatosis, and inflammation in adulthood. Objective: To investigate the effects on hepatic metabolism of intake of diets with various levels of fat associated with fructose drinks during childhood. Methods: Male 21-days-old rats were divided into groups: Control (C, 16.3% kcal from lipids diet and water); High-fat (HF, 45% kcal from lipids diet and fructose drink); and very high-fat (VHF, 60% kcal from lipids diet and fructose drink). After 10 weeks, blood and liver were collected for biochemical, histological, lipid profile, and Western blotting analyses. Results: The HF and VHF animals presented higher adiposity index, hepatic accumulation of lipids, and inflammatory cells, suggesting the treatments were effective at inducing non-alcoholic fatty liver disease in its inflammatory form. The hepatic content of cleaved caspase-3 and deposition of collagen fibers were increased in the HF group. Conclusion: In summary, lipid-rich diets combined with fructose drinks seem to promote the increase in body lipids content and accumulation of lipids, inflammation, activation of apoptotic signaling pathways, and the initiation of a fibrotic process in the liver in adulthood.

Downloads

Download data is not yet available.

Article Details

How to Cite
Freire, L. S., Silva, F. A. da, Lima, T. da R., Ávila, E. T. P., Damazo, A. S., Pereira, M. P., Santos, S. F., Lemes, S. A. de F., Gai, B. M., & Kawashita, N. H. (2025). High-fat diet and fructose drink stimulate apoptotic signaling via cleaved caspase-3 protein in hepatic cells of rats. ABCS Health Sciences. https://doi.org/10.7322/abcshs.2023284.2600
Section
Original Articles

References

Arshad T, Golabi P, Henry L, Younossi ZM. Epidemiology of Non-alcoholic Fatty Liver Disease in North America. Curr Pharm Des. 2020;26(10):993-7. https://doi.org/10.2174/1381612826666200303114934

Coronati M, Baratta F, Pastori D, Ferro D, Angelico F, Del Ben M. Added Fructose in Non-Alcoholic Fatty Liver Disease and Metabolic Syndrome: A Narrative Review. Nutrients. 2022;14(6):1127. https://doi.org/10.3390/nu14061127

Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015;1(1):15080. https://doi.org/10.1038/nrdp.2015.80

Bertot LC, Adams LA. The Natural Course of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci. 2016;17(5):774. https://doi.org/10.3390/ijms17050774

Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015;313(22):2263-73. https://doi.org/10.1001/jama.2015.5370

Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res. 2009;48(1):1-26. https://doi.org/10.1016/j.plipres.2008.08.001

Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118(3):829-38. https://doi.org/10.1172/JCI34275

Morita M, Ishida N, Uchiyama K, Yamaguchi K, Itoh Y, Shichiri M, et al. Fatty liver induced by free radicals and lipid peroxidation. Free Radic Res. 2012;46(6):758-65. https://doi.org/10.3109/10715762.2012.677840

Mells JE, Fu PP, Kumar P, Smith T, Karpen SJ, Anania FA. Saturated fat and cholesterol are critical to inducing murine metabolic syndrome with robust nonalcoholic steatohepatitis. J Nutr Biochem. 2015;26(3):285-92. https://doi.org/10.1016/j.jnutbio.2014.11.002

Nassir F. NAFLD: Mechanisms, Treatments, and Biomarkers. Biomolecules. 2022;12(6):824. https://doi.org/10.3390/biom12060824

Jensen VS, Hvid H, Damgaard J, Nygaard H, Ingvorsen C, Wulff EM, et al. Dietary fat stimulates the development of NAFLD more potently than dietary fructose in Sprague-Dawley rats. Diabetol Metab Syndr. 2018;10:4. https://doi.org/10.1186/s13098-018-0307-8

Lau JK, Zhang X, Yu J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J Pathol. 2017;241(1):36-44. https://doi.org/10.1002/path.4829

Silva FA, Freire LS, Lima TDR, Santos SF, Lemes SAF, Gai BM, et al. The introduction of high-fat and very-high-fat diets associated with fructose drinks in critical development periods causes cardiovascular damage in rats at the beginning of adult life. Nutrition. 2022;101:111689. https://doi.org/10.1016/j.nut.2022.111689

Berna G, Romero-Gomez M. The role of nutrition in non-alcoholic fatty liver disease: Pathophysiology and management. Liver Int. 2020;40(Suppl 1):102-8. https://doi.org/10.1111/liv.14360

Lima TDR, Voltarelli FA, Freire LS, Silva FA, Almeida PC, Avila ETP, et al. High-fat diet and fructose drink introduced after weaning rats induce a better human obesity model than a very high-fat diet. J Food Biochem. 2021;45(4):e13671. https://doi.org/10.1111/jfbc.13671

Reeves PG, Nielsen FH, Fahey GC, Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123(11):1939-51. https://doi.org/10.1093/jn/123.11.1939

Taylor BA, Phillips SJ. Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics. 1996;34(3):389-98. https://doi.org/10.1006/geno.1996.0302

Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41(1):111-9. https://doi.org/10.1258/002367707779399518

Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497-509.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. https://doi.org/10.1006/abio.1976.9999

Vollmer RL. Parental feeding style changes the relationships between children's food preferences and food parenting practices: The case for comprehensive food parenting interventions by pediatric healthcare professionals. J Spec Pediatr Nurs. 2019;24(1):e12230. https://doi.org/10.1111/jspn.12230

Nascimento AF, Luvizotto RA, Leopoldo AS, Lima-Leopoldo AP, Seiva FR, Justulin LA Jr., et al. Long-term high-fat diet-induced obesity decreases the cardiac leptin receptor without apparent lipotoxicity. Life Sci. 2011;88(23-24):1031-8. https://doi.org/10.1016/j.lfs.2011.03.015

Silva DC, Lima-Leopoldo AP, Leopoldo AS, Campos DH, Nascimento AF, Oliveira Junior SA, et al. Influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Arq Bras Cardiol. 2014;102(2):157-63. https://doi.org/10.5935/abc.20130232

Tentolouris N, Pavlatos S, Kokkinos A, Perrea D, Pagoni S, Katsilambros N. Diet-induced thermogenesis and substrate oxidation are not different between lean and obese women after two different isocaloric meals, one rich in protein and one rich in fat. Metabolism. 2008;57(3):313-20. https://doi.org/10.1016/j.metabol.2007.10.004

Lee MR, Park KI, Ma JY. Leonurus japonicus Houtt Attenuates Nonalcoholic Fatty Liver Disease in Free Fatty Acid-Induced HepG2 Cells and Mice Fed a High-Fat Diet. Nutrients. 2017;10(1). https://doi.org/10.3390/nu10010020

Kawasaki T, Igarashi K, Koeda T, Sugimoto K, Nakagawa K, Hayashi S, et al. Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis. J Nutr. 2009;139(11):2067-71. https://doi.org/10.3945/jn.109.105858

Silbernagel G, Machann J, Unmuth S, Schick F, Stefan N, Haring HU, Fritsche A. Effects of 4-week very-high-fructose/glucose diets on insulin sensitivity, visceral fat, and intrahepatic lipids: an exploratory trial. Br J Nutr. 2011;106(1):79-86. https://doi.org/10.1017/S000711451000574X

Ipsen DH, Tveden-Nyborg P, Rolin B, Rakipovski G, Beck M, Mortensen LW, et al. High-fat but not sucrose intake is essential for induction of dyslipidemia and non-alcoholic steatohepatitis in guinea pigs. Nutr Metab (Lond). 2016;13:51. https://doi.org/10.1186/s12986-016-0110-1

Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, et al. Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. Oxid Med Cell Longev. 2018;2018:9547613. https://doi.org/10.1155/2018/9547613

Tonnus W, Meyer C, Paliege A, Belavgeni A, von Massenhausen A, Bornstein SR, et al. The pathological features of regulated necrosis. J Pathol. 2019;247(5):697-707. https://doi.org/10.1002/path.5248

McClure DE. Clinical pathology and sample collection in the laboratory rodent. Vet Clin North Am Exot Anim Pract. 1999;2(3):565-90,vi. https://doi.org/10.1016/s1094-9194(17)30111-1

Cordeiro A, Pereira SE, Saboya CJ, Ramalho A. Nonalcoholic Fatty Liver Disease Relationship with Metabolic Syndrome in Class III Obesity Individuals. Biomed Res Int. 2015;2015:839253. https://doi.org/10.1155/2015/839253

Targher G, Bellis A, Fornengo P, Ciaravella F, Pichiri I, Cavallo Perin P, et al. Prevention and treatment of nonalcoholic fatty liver disease. Dig Liver Dis. 2010;42(5):331-40. https://doi.org/10.1016/j.dld.2010.02.004

Liang W, Menke AL, Driessen A, Koek GH, Lindeman JH, Stoop R, et al. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One. 2014;9(12):e115922. https://doi.org/10.1371/journal.pone.0115922

Ribeiro PS, Cortez-Pinto H, Sola S, Castro RE, Ramalho RM, Baptista A, et al. Hepatocyte apoptosis, expression of death receptors, and activation of NF-kappaB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am J Gastroenterol. 2004;99(9):1708-17. https://doi.org/10.1111/j.1572-0241.2004.40009.x

Ganz M, Szabo G. Immune and inflammatory pathways in NASH. Hepatol Int. 2013;7(Suppl 2):771-81. https://doi.org/10.1007/s12072-013-9468-6

Gao B, Tsukamoto H. Inflammation in Alcoholic and Nonalcoholic Fatty Liver Disease: Friend or Foe? Gastroenterology. 2016;150(8):1704-9. https://doi.org/10.1053/j.gastro.2016.01.025

Del Campo JA, Gallego P, Grande L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J Hepatol. 2018;10(1):1-7. https://doi.org/10.4254/wjh.v10.i1.1

Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, Gores GJ. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125(2):437-43. https://doi.org/10.1016/s0016-5085(03)00907-7

Shojaie L, Iorga A, Dara L. Cell Death in Liver Diseases: A Review. Int J Mol Sci. 2020;21(24). https://doi.org/10.3390/ijms21249682