Curcumin-rich extract from Central Brazil Curcuma longa protects human umbilical vein endothelial cells under oxidative stress
Main Article Content
Abstract
Introduction: In vascular diseases, the interruption of the local blood flow and the subsequent reperfusion of oxygen can cause deleterious oxidative effects on the cells. Turmeric (Curcuma longa L.) presents the capacity to neutralize free radicals along with preventive and therapeutic effects for several diseases. Objective: To analyze the bioactive compounds and the antioxidant capacity of the ethanolic extract of Curcuma (EEC), to evaluate its effect on human umbilical vein endothelial cells, and to analyze its effect on cellular signaling pathways. Methods: Cells were exposed to different concentrations of EEC for 24, 48, and 72 h. Folin-Ciocalteau test, HPLC-Fluorescence analysis, and DPPH method were used to determine the phenolic compounds, curcumin content, and antioxidant action, respectively; the tetrazolium salt reduction to obtain cell viability, cytotoxicity, and the concentration that inhibits 50% of cell viability; and the immunocytochemistry technique to analyze the expression of caspase3, SIRT1, and mTOR. Results: We found the presence of polyphenols in the classes of phenolic acids and curcuminoids in EEC, with 16.7% curcumin content. The number of antioxidants needed to reduce the initial DPPH concentration by 50% was 18.1 μmol/g. The extract mitigated cell damage at a dosage of 100 μg/ml, decreased the immunoexpression of caspase3, and promoted the signaling of the SIRT1 and mTOR survival pathways. Conclusion: EEC had a protective effect on human umbilical vein endothelial cells, subjected to oxidative stress, with decreased apoptosis (caspase3) at lower concentrations, cytoprotection by maintaining essential cell functions (mTOR), and signaling of the survival pathway (SIRT1).
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY) that allows others to share and adapt the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.References
Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância de Doenças e Agravos não Transmissíveis e Promoção da Saúde. Saúde Brasil 2018 uma análise de situação de saúde e das doenças e agravos crônicos: desafios e perspectivas. Brasília: Ministério da Saúde, 2019.
Soares GP, Klein CH, Silva NAS, Oliveira GMM. Evolução da mortalidade por doenças do aparelho circulatório nos municípios do Estado do Rio de Janeiro, de 1979 a 2010. Arq Bras Cardiol. 2015;104(5):1-10. http://doi.org/10.5935/abc.20150019
Wu Y, Liu H, Wang X. Cardioprotection of pharmacological postconditioning on myocardial ischemia/reperfusion injury. Life Sci. 2021;264(1):118628. http://doi.org/10.1016/j.lfs.2020.118628
Karłowicz-Bodalska K, Han S, Freier J, Smoleński M, Bodalska A. Curcuma longa as medicinal herb in the treatment of diabetic - complications. Acta Pol Pharm. 2017;74(2):605-10.
Mitsuwan W, Bunsuwansakul C, Leonard TE, Laohaprapanon S, Hounkong K, Bunluepuech K, et al. Curcuma longa ethanol extract and Curcumin inhibit the growth of Acanthamoeba triangularis trophozoites and cysts isolated from water reservoirs at Walailak University, Thailand. Pathog Glob Health. 2020;114(4):194-204. http://doi.org/10.1080/20477724.2020.1755551
Li W, Suwanwela NC, Patumraj S. Curcumin prevents reperfusion injury following ischemic stroke in rats via inhibition of NF‑κB, ICAM-1, MMP-9, and caspase-3 expression. Mol Med Rep. 2017;16(4):4710-20. http://doi.org/10.3892/mmr.2017.7205
Han J, Pan XY, Xu Y, Xiao Y, An Y, Tie L, et al. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy. 2012;8(5):812-25. http://doi.org/10.4161/auto.19471
Sun Y, Hu X, Hu G, Xu C, Jiang H. Curcumin attenuates hydrogen peroxide-induced premature senescence via the activation of SIRT1 in human umbilical vein endothelial cells. Biol Pharm Bull. 2015;38(8):1134-41. http://doi.org/10.1248/bpb.b15-00012
Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, et al. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med. 2013;65:667-79. http://doi.org/10.1016/j.freeradbiomed.2013.07.007
Péret-Almeida L, Naghetini CDC, Nunan EDA, Junqueira RG, Glória MBA. Atividade antimicrobiana in vitro do rizoma em pó, dos pigmentos curcuminóides e dos óleos e dos essenciais da Curcuma longa L. Cienc Agrotec. 2008;32(3):875-81. https://doi.org/10.1590/S1413-70542008000300026
Waterhouse AL. Determination of total phenolics. Curr Protoc Food Analyt Chemistry. 2002;6(Supl 6):I1.1-8. https://doi.org/10.1002/0471142913.fai0101s06
Rufino MSM, Alves RE, Brito ES, Morais SM, Sampaio CG, Jimenez JP, et al. Determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Embrapa, 2007.
Manea SA, Fenyo IM, Manea A. c-Src tyrosine kinase mediates high glucose-induced endothelin-1 expression. Int J Biochem Cell Biol. 2016;75:123-30. https://doi.org/10.1016/j.biocel.2016.04.008
Gong L, Lei Y, Liu Y, Tan F, Li S, Wang X, et al. Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling. Am J Transl Res. 2019;11(4):2140-54.
Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - a review. Diagn Pathol. 2014;9:221. https://doi.org/10.1186/s13000-014-0221-9
Kotha RR, Luthria DL. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. 2019;24(16):2930. https://doi.org/10.3390/molecules24162930
Arnhold E. Package in the R-environment for analysis of variance and complementary analyses. Braz J Vet Res Animal Sci. 2013;50(6):488-92. https://doi.org/10.11606/issn.1678-4456.v50i6p488-492
Carvalho DM, Takeuchi KP, Geraldine RM, Moura CJ, Carneiro JE, Santos APM. Assessing Curcumin Solubility in Food-Grade Solvents. Rev Proc Químicos. 2015;9(17):23-6. https://doi.org/10.19142/rpq.v9i17.233
Burapan S, Kim M, Paisooksantivatana Y, Eser BE, Han J. Thai Curcuma Species: Antioxidant and Bioactive Compounds. Foods. 2020;9:1-11. https://doi.org/10.3390/foods9091219
Gao J, Hu J, Hu D, Yang X. A role of gallic acid in oxidative damage diseases: a comprehensive review. Natural Prod Commun 2019;14(8):1-9. https://doi.org/10.1177/1934578X19874174
Ferreira NLO, Rodrigues MCM, Arruda RL, Santos PA, Bara MTF, Conceição EC. New formulation containing curcuminoids: Method validation and dissolution profile. Phcog Mag. 2019;15(60):73. https://doi.org/10.4103/pm.pm_50_18
Akbar A, Kuanar A, Joshi RK, Sandeep IS, Mohanty S, Naik PK, et al. Development of prediction model and experimental validation in predicting the curcumin content of turmeric (Curcuma longa L.). Front Plant Sci. 2016;7:1507. https://doi.org/10.3389/fpls.2016.01507
Silva NFD, Sonnenberg PE, Borges JD. Crescimento e produção de cúrcuma (Curcuma longa L.) em função de adubação mineral e densidade de plantio. Hortic Bras. 2004;22(1):61-5.
Tanvir EM, Hossen S, Hossain F, Afroz R, Gan SH, Khalil I, et al. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J Food Quality. 2017. https://doi.org/10.1155/2017/8471785
Carvalho DDM, Takeuchi KP, Geraldine RM, Moura CJD, Torres MCL. Production, solubility and antioxidant activity of curcumin nanosuspension. Food Sci Technol. 2015;35(1):115-9. http://dx.doi.org/10.1590/1678-457X.6515
Hosseini A, Rasmi Y, Rahbarghazi R, Aramwit P, Daeihassani B, Saboory E. Curcumin modulates the angiogenic potential of human endothelial cells via FAK/P-38 MAPK signaling pathway. Gene. 2019;688:7-12. https://doi.org/10.1016/j.gene.2018.11.062
Mohammad P, Nosratollah Z, Mohammad R, Abbas A, Javad R. The inhibitory effect of Curcuma longa extract on telomerase activity in A549 lung cancer cell line. African J Biotechnol. 2010;9(6):912-19.
Jia G, Aroor AR, Jia C, Sowers JR. Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1802-9. https://doi.org/10.1016/j.bbadis.2018.08.008
Xiao J, Sheng X, Zhang X, Guo M, Ji X. Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro. Drug Des Devel Ther. 2016;10:1267-77. https://doi.org/10.2147/DDDT.S104925
Huang C, Lu HF, Chen YH, Chen JC, Chou WH, Huang HC. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and -independent apoptosis via Smad or Akt signaling pathways in HOS cells. BMC Complement Med Ther. 2020;20(1):68. https://doi.org/10.1186/s12906-020-2857-1
Huang L, Chen C, Zhang X, Li X, Chen Z, Yang C, et al. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J Mol Neurosci. 2018;64(1):129-39. https://doi.org/10.1007/s12031-017-1006-x
Guo S, Long M, Li X, Zhu S, Zhang M, Yang Z. Curcumin activates autophagy and attenuates oxidative damage in EA. hy926 cells via the Akt/mTOR pathway. Mol Med Rep. 2016;13(3):2187-93. https://doi.org/10.3892/mmr.2016.4796