O efeito da substituição de comportamento sedentário por atividade física de diferentes intensidades na composição corporal: uma revisão sistemática

Conteúdo do artigo principal

Melyssa Alves Souza
Thatiane Lopes Valentim Di Paschoale Ostolin

Resumo

Introdução: O modelo de substituição isotemporal (MSI) é uma abordagem estatística que estima os efeitos da substituição, em minutos, de um bloco de atividade física ou comportamento sedentário por outro bloco de intensidade diferente. Anteriormente, o MSI foi utilizado para avaliar o efeito de diferentes substituições isotemporais na composição corporal, contribuindo para o entendimento de suas mudanças relacionadas aos distintos estilos de vida e subsidiando futuras recomendações para sua manutenção ou aprimoramento. Objetivo: Revisar o efeito da substituição do comportamento sedentário pela atividade física na mudança da composição corporal analisada pelo MSI. Métodos: Artigos originais em inglês foram identificados por busca nas bases de dados PubMed e Periódico Capes. A última busca foi realizada por duas pesquisadoras até outubro de 2020. Resultados: Foram incluídos 17 artigos, que avaliaram diferentes aplicações do MSI relacionadas à alteração da composição corporal, obtida principalmente pelo IMC e gordura corporal. A atividade física foi avaliada majoritariamente por acelerometria. Diferenças metodológicas entre os estudos incluídos limitaram comparar os achados, incluindo perfil da amostra e pontos de corte para atividade física. Conclusão: Dentre os estudos que avaliam o efeito da substituição do comportamento sedentário por diferentes intensidades de atividade física por meio do ISM, a substituição do comportamento sedentário por atividade física moderada a intensa por, pelo menos cinco minutos, apresentou efeito mais consistente na alteração da composição corporal comparado a outras intensidades de atividade física.


 

Downloads

Não há dados estatísticos.

Detalhes do artigo

Como Citar
Souza, M. A., & Ostolin, T. L. V. D. P. (2021). O efeito da substituição de comportamento sedentário por atividade física de diferentes intensidades na composição corporal: uma revisão sistemática. ABCS Health Sciences, 46, e021304. https://doi.org/10.7322/abcshs.2020089.1486
Seção
Artigos de Revisão
Biografia do Autor

Melyssa Alves Souza, Laboratório de Diabetes Experimental e Sinalização Celular, Universidade Federal de São Paulo (UNIFESP) – Santos (SP), Brasil

Biociences Department

Referências

Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170(4):519-27. http://doi.org/10.1093/aje/kwp163

Willett W, Stampfer MJ. Total energy intake: Implications for epidemiologic analyses. Am J Epidemiol. 1986;124(1):17-27. http://doi.org/10.1093/oxfordjournals.aje.a114366

Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65(4 Suppl):1220S-8S. http://doi.org/10.1093/ajcn/65.4.1220S

Dumuid D, Wake M, Clifford S, Burgner D, Carlin JB, Mensah FK, et al. The Association of the Body Composition of Children with 24-Hour Activity Composition. J Pediatr. 2019;208:43-9.e9. http://doi.org/10.1016/j.jpeds.2018.12.030

Pedišić Ž, Dumuid D, Olds TS. Integrating sleep, sedentary behaviour, and physical activity research in the emerging fied of time-use epidemiology: Definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49(2):1-17.

American College of Sports Medicine (ACSM). Guidelines for exercise testing and prescription. 10th edition. Philadelphia: Wolters Kluwer Health, 2018.

Keane E, Li X, Harrington JM, Fitzgerald AP, Perry IJ, Kearney PM. Physical activity, sedentary behavior and the risk of overweight and obesity in school-aged children. Pediatr Exerc Sci. 2017;29(3):408-18. http://doi.org/10.1123/pes.2016-0234

McPhee JS, French DP, Jackson D, Nazroo J, Pendleton N, Degens H. Physical activity in older age: perspectives for healthy ageing and frailty. Biogerontology. 2016;17(3):567-80. http://doi.org/10.1007/s10522-016-9641-0

World Health Organization (WHO). Physical activity. Available from: https://www.who.int/news-room/fact-sheets/detail/physical-activity.

Wu XY, Han LH, Zhang JH, Luo S, Hu JW, Sun K. The influence of physical activity, sedentary behavior on health-related quality of life among the general population of children and adolescents: A systematic review. PLoS One. 2017;12(11):e0187668. http://doi.org/10.1371/journal.pone.0187668

Rezende LFM, Rey-López JP, Matsudo VKR, Luiz ODC. Sedentary behavior and health outcomes among older adults: A systematic review. BMC Public Health. 2014;14:333. http://doi.org/10.1186/1471-2458-14-333

Mekary RA, Ding EL. Isotemporal Substitution as the Gold Standard Model for Physical Activity Epidemiology: Why It Is the Most Appropriate for Activity Time Research. Int J Environ Res Public Health. 2019;16(5):797. http://doi.org/10.3390/ijerph16050797

World Health Organization (WHO). Physical status: the use and interpretation of Anthropometry. Available from: https://www.who.int/childgrowth/publications/physical_status/en/

Leppänen MH, Henriksson P, Delisle Nyström C, Henriksson H, Ortega FB, Pomeroy J, et al. Longitudinal physical activity, body composition, and physical fitness in preschoolers. Med Sci Sports Exerc. 2017;49(10):2078-85. http://doi.org/10.1249/MSS.0000000000001313

Matsudo S, Araujo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, et al. Questionario Internacional de Atividade Física (IPAQ): estudo de validade e reprodutibilidade no Brasil. Soc Bras Ativ Fis Saude. 2001;6(2):5-18. https://doi.org/10.12820/rbafs.v.6n2p5-18

Migueles JH, Cadenas-Sanchez C, Ekelund U, Nyström CD, Mora-Gonzalez J, Löf M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sport Med. 2017;47(9):1821-45. https://doi.org/10.1007/s40279-017-0716-0

Skender S, Ose J, Chang-Claude J, Paskow M, Brühmann B, Siegel EM, Steindorf K, et al. Accelerometry and physical activity questionnaires - a systematic review. BMC Public Health. 2016;16:515. https://doi.org/10.1186/s12889-016-3172-0

Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Principais itens para relatar Revisões sistemáticas e Meta-análises: a recomendação PRISMA. Epidemiol Serv Saude. 2015;24(2):335-42. http://dx.doi.org/10.5123/S1679-49742015000200017

Falconer CL, Page AS, Andrews RC, Cooper AR. The potential impact of displacing sedentary time in adults with type 2 Diabetes. Med Sci Sports Exerc. 2015;47(10):2070-5. https://doi.org/10.1249/MSS.0000000000000651

Ferreira RW, Rombaldi AJ, Ricardo LIC, Hallal PC, Azevedo MR. Prevalence of sedentary behavior and its correlates among primary and secondary school students. Rev Paul Pediatr. 2016;34(1):56-63. https://doi.org/10.1016/j.rppede.2015.09.002

Varela-Mato V, O’Shea O, King JA, Yates T, Stensel DJ, Biddle SJ, et al. Cross-sectional surveillance study to phenotype lorry drivers’ sedentary behaviours, physical activity and cardio-metabolic health. BMJ Open. 2017;7(6):e013162. http://doi.org/10.1136/bmjopen-2016-013162

Danquah IH, Pedersen ESL, Petersen CB, Aadahl M, Holtermann A, Tolstrup JS. Estimated impact of replacing sitting with standing at work on indicators of body composition: Cross-sectional and longitudinal findings using isotemporal substitution analysis on data from the Take a Stand! study. PLoS One. 2018;13(6):e0198000. http://doi.org/10.1371/journal.pone.0198000

Collings PJ, Brage S, Bingham DD, Costa S, West J, Mceachan RRC, et al. Physical Activity, Sedentary Time, and Fatness in a Biethnic Sample of Young Children. Med Sci Sports Exerc. 2017;49(5):930-8. http://doi.org/10.1249/MSS.0000000000001180

Leppanen MH, Nystrom CD, Henriksson P, Pomeroy J, Ruiz JR, Ortega FB, et al. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: results from the ministop trial. Int J Obes. 2016;40(7):1126-33. http://doi.org/10.1038/ijo.2016.54

Aggio D, Smith L, Hamer M. Effects of reallocating time in different activity intensities on health and fitness: A cross sectional study. Int J Behav Nutr Phys Act. 2015;12:83. http://doi.org/10.1186/s12966-015-0249-6

Del Pozo-Cruz B, Gant N, Del Pozo-Cruz J, Maddison R. Relationships between sleep duration, physical activity and body mass index in young New Zealanders: An isotemporal substitution analysis. PLoS One. 2017;12(9):e0184472. http://doi.org/10.1371/journal.pone.0184472

Collings PJ, Westgate K, Väistö J, Wijndaele K, Atkin AJ, Haapala EA, et al. Cross-Sectional Associations of Objectively-Measured Physical Activity and Sedentary Time with Body Composition and Cardiorespiratory Fitness in Mid-Childhood: The PANIC Study. Sport Med. 2017;47(4):769-80. http://doi.org/110.1007/s40279-016-0606-x

Loprinzi PD, Cardinal BJ, Lee H, Tudor-Locke C. Markers of adiposity among children and adolescents: implications of the isotemporal substitution paradigm with sedentary behavior and physical activity patterns. J Diabetes Metab Disord. 2015;14:46. http://doi.org/10.1186/s40200-015-0175-9

Jones MA, Skidmore PM, Stoner L, Harrex H, Saeedi P, Black K, et al. Associations of accelerometer-measured sedentary time, sedentary bouts, and physical activity with adiposity and fitness in children. J Sports Sci. 2020;38(1):114-20. http://doi.org/10.1080/02640414.2019.1685842

Tan K, Cai L, Lai L, Gui Z, Zeng X, Lv Y, et al. Association of reallocating time in different intensities of physical activity with weight status changes among normal-weight chinese children: A national prospective study. Int J Environ Res Public Health. 2020;17(16):5761. http://doi.org/10.3390/ijerph17165761

Dumuid D, Stanford TE, Pedi Z, Maher C, Lewis LK, Martín-Fernandez JA, et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: a compositional data analysis approach. BMC Public Health. 2018;18;311. https://doi.org/10.1186/s12889-018-5207-1

Oviedo-Caro MA, Bueno-Antequera J, Munguía-Izquierdo D. Associations of 24-hours activity composition with adiposity and cardiorespiratory fitness: the PregnActive project. Scand J Med Sci Sport. 2020;30(2):295-302. https://doi.org/10.1111/sms.13566

Dahl-Petersen IK, Brage S, Bjerregaard P, Tolstrup J, Jorgensen ME. Physical activity and abdominal fat distribution in Greenland. Med Sci Sports Exerc. 2017;49(10):2064-70. https://doi.org/10.1249/MSS.0000000000001337

Galmes-Panades AM, Varela-Mato V, Konieczna J, Wärnberg J, Martínez-González MA, Salas-Salvadó J, et al. Isotemporal substitution of inactive time with physical activity and time in bed: Cross-sectional associations with cardiometabolic health in the PREDIMED-Plus study. Int J Behav Nutr Phys Act. 2019;16:137. https://doi.org/10.1186/s12966-019-0892-4

Boyle T, Vallance JK, Buman MP, Lynch BM. Reallocating time to sleep, sedentary time, or physical activity: Associations with waist circumference and body mass index in breast cancer survivors. Cancer Epidemiol Biomarkers Prev. 2017;26(2):254-60. http://doi.org/10.1158/1055-9965.EPI-16-0545

Curtis RG, Dumuid D, Olds T, Plotnikoff R, Vandelanotte C, Ryan J, et al. The association between time-use behaviors and physical and mental well-being in adults: a compositional isotemporal substitution analysis. J Phys Act Heal. 2020;17(2):197-203. https://doi.org/10.1123/jpah.2018-0687

Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777-81. http://doi.org/10.1097/00005768-199805000-00021

Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37(11 Suppl):S523-30. http://doi.org/10.1249/01.mss.0000185658.28284.ba

Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(1):1557-65. https://doi.org/10.1080/02640410802334196

Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of inactivity in chronic diseases: Evolutionary insight and pathophysiological mechanisms. Physiol Rev. 2017;97(4):1351-1402. https://doi.org/10.1152/physrev.00019.2016

Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1360-8. https://doi.org/10.1249/MSS.0b013e318206476e

Strath SJ, Bassett DR, Swartz AM. Comparison of MTI accelerometer cut-points for predicting time spent in physical activity. Int J Sports Med. 2003;24(4):298-303. https://doi.org/10.1055/s-2003-39504

Bianchim MS, McNarry MA, Larun L, Mackintosh KA, ActiveYouth SRC group, Applied Sports Science Technology, et al. Calibration and validation of accelerometry to measure physical activity in adult clinical groups: a systematic review. Prev Med Rep. 2019;16:101001. https://doi.org/10.1016/j.pmedr.2019.101001

Colley RC, Tremblay MS. Moderate and vigorous physical activity intensity cut-points for the Actical accelerometer. J Sports Sci. 2011;29(8):783-9. https://doi.org/10.1080/02640414.2011.557744

World Health Organization (WHO). Obesity and overweight. Available from: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.

Nittari G, Scuri S, Petrelli F, Pirillo I, Di Luca NM, Grappasonni I. Fighting obesity in children from European World Health Organization member states. Epidemiological data, medical-social aspects, and prevention programs. Clin Ter. 2019;170(3):e223-30. https://doi.org/10.7417/CT.2019.2137

Spinelli A, Buoncristiano M, Kovacs VA, Yngve A, Spiroski I, Obreja G, et al. Prevalence of severe obesity among primary school children in 21 European countries. Obes Facts. 2019;12(2):244-58. https://doi.org/10.1159/000500436

Rivera JA, Cossío TG, Pedraza LS, Aburto TC, Sánchez TG, Martorell R. Childhood and adolescent overweight and obesity in Latin America: A systematic review. Lancet Diabetes Endocrinol. 2014;2(4):321-32. https://doi.org/10.1016/S2213-8587(13)70173-6

Marques A, Peralta M, Naia A, Loureiro N, Matos MG. Prevalence of adult overweight and obesity in 20 European countries, 2014. Eur J Public Health. 2018;28(2):295-300. https://doi.org/10.1093/eurpub/ckx143

Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007-2008 to 2015-2016. JAMA. 2018;319(16):1723-5. https://doi.org/10.1001/jama.2018.3060

Kalish VB. Obesity in older adults. Prim Care Clin Office Pract. 2016;43:137-44. http://dx.doi.org/10.1016/j.pop.2015.10.002

Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Guia Alimentar para a População Brasileira. 2 ed. Brasília: Ministério da Saúde. 2014.

American Institutes for Reserch (AIR). Federal Interagency Forum on Aging-Related Statistics. Available from: https://www.air.org/project/federal-interagency-forum-aging-related-statistics

Zink J, Belcher BR, Imm K, Leventhal AM. The relationship between screen-based sedentary behaviors and symptoms of depression and anxiety in youth: a systematic review of moderating variables. BMC Public Health. 2020;20:472. https://doi.org/10.1186/s12889-020-08572-1

Shaphe MA, Chahal A. Relation of physical activity with the depression: a short review. J Lifestyle Med. 2020;10(1):1-6. https://doi.org/10.15280/jlm.2020.10.1.1

Grgic J, Dumuid D, Bengoechea EG, Shrestha N, Bauman A, Olds T, et al. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: A systematic scoping review of isotemporal substitution studies. Int J Behav Nutr Phys Act. 2018;15(1):69. http://doi.org/10.1186/s12966-018-0691-3