Avaliação comparativa dos efeitos da terapia de fotobiomodulação com laser infravermelho e vermelho na atrofia muscular esquelética em modelo de imobilização em ratos
Conteúdo do artigo principal
Resumo
Não se aplica
Downloads
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob uma licença Creative Commons CC BY que permite o compartilhamento e adaptação do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Referências
Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014;307(6):E469-84. https://doi.org/10.1152/ajpendo.00204.2014
Lee JH, Jun HS. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol. 2019;10:42. https://doi.org/10.3389/fphys.2019.00042
Rosa-Caldwell ME, Greene NP. Muscle metabolism and atrophy let's talk about sex. Biol Sex Differ. 2019;10(1):43. https://doi.org/10.1186/s13293-019-0257-3
Morley JE, Kalantar-Zadeh K, Anker SD. COVID-19: a major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Muscle. 2020;11(4):863-65. https://doi.org/10.1002/jcsm.12589
March L, Smith EU, Hoy DG, Cross MJ, Sanchez-Riera L, Blyth F, et al. Burden of disability due to musculoskeletal (MSK) disorders. Best Pract Res Clin Rheumatol. 2014;28(3):353-66. https://doi.org/10.1016/j.berh.2014.08.002
Beaudart C, Biver E, Bruyère O, Cooper C, Al-Daghri N, Reginster JY, et al. Quality of life assessment in musculo-skeletal health. Aging Clin Exp Res. 2018;30(5):413-18. https://doi.org/10.1007/s40520-017-0794-8
Gruet M, Troosters T, Verges S. Peripheral muscle abnormalities in cystic fibrosis: Etiology, clinical implications and response to therapeutic interventions. J Cyst Fibros. 2017;16(5):538-52. https://doi.org/10.1016/j.jcf.2017.02.007
Lee JH, Jun HS. Role of myokines in regulating skeletal muscle mass and function. Front Physiol. 2019;10:42. https://doi.org/10.3389/fphys.2019.00042
You JS, Anderson GB, Dooley MS, Hornberger TA. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. Dis Model Mech. 2015;8(9):1059-69. https://doi.org/10.1242/dmm.019414
Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516-33. https://doi.org/10.1111/apha.12532
Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):7000417. https://doi.org/10.1109/JSTQE.2016.2561201
Assis L, Moretti AI, Abrahão TB, Souza HP, Hamblin MR, Parizotto NA. Low-level laser therapy (808 nm) contributes to muscle regeneration and prevents fibrosis in rat tibialis anterior muscle after cryolesion. Lasers Med Sci. 2013;28(3):947-55. https://doi.org/10.1007/s10103-012-1183-3
Ferraresi C, Hamblin MR, Parizotto NA. Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue, and repair benefited by the power of light. Photonics Lasers Med. 2012;1(4):267-86. https://doi.org/10.1515/plm-2012-0032
Lakyová L, Toporcer T, Tomečková V, Sabo J, Radoňak J. Low-level laser therapy for protection against skeletal muscle damage after ischemia-reperfusion injury in rat hindlimbs. Lasers Surg Med. 2010;42(9):665-72. https://doi.org/10.1002/lsm.20967
Quintana HT, Baptista VIA, Lazzarin MC, Antunes HKM, Le Sueur-Maluf L, Oliveira CAM, et al. Insulin modulates myogenesis and muscle atrophy resulting from skin scald burn in young male rats. J Surg Res. 2021;257:56-68. https://doi.org/10.1016/j.jss.2020.07.040
Dubowitz V, Sewry CA, Fitzsimons RB. Muscle biopsy a practical approach. 2nd ed. London: Bailliere Tindall, 1985.
Zhang P, Chen X, Fan M. Signaling mechanisms involved in disuse muscle atrophy. Med Hypotheses. 2007;69(2):310-21. https://doi.org/10.1016/j.mehy.2006.11.043
Gomes AR, Coutinho EL, França CN, Polonio J, Salvini TF. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology. Braz J Med Biol Res. 2004;37(10):1473-80. https://doi.org/10.1590/s0100-879x2004001000005
Williams PE, Goldspink G. Changes in sarcomere length and physiological properties in immobilized muscle. J Anat. 1978;127(Pt 3):459-68.
Shah SB, Peters D, Jordan KA, Milner DJ, Fridén J, Capetanaki Y, et al. Sarcomere number regulation maintained after immobilization in desmin-null mouse skeletal muscle. J Exp Biol. 2001;204(Pt 10):1703-10.
Järvinen MJ, Einola SA, Virtanen EO. Effect of the position of immobilization upon the tensile properties of the rat gastrocnemius muscle. Arch Phys Med Rehabil. 1992;73(3):253-7.
Ahtikoski AM, Koskinen SO, Virtanen P, Kovanen V, Risteli J, Takala TE. Synthesis and degradation of type IV collagen in rat skeletal muscle during immobilization in shortened and lengthened positions. Acta Physiol Scand. 2003;177(4):473-81. https://doi.org/10.1046/j.1365-201X.2003.01061.x
Wall BT, Dirks ML, Snijders T, Senden JM, Dolmans J, van Loon LJ. Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol (Oxf). 2014;210(3):600-11. https://doi.org/10.1111/apha.12190
Järvinen TA, Józsa L, Kannus P, Järvinen TL, Järvinen M. Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study. J Muscle Res Cell Motil. 2002;23(3):245-54. https://doi.org/10.1023/a:1020904518336
Amaral AC, Parizotto NA, Salvini TF. Dose-dependency of low-energy HeNe laser effect in regeneration of skeletal muscle in mice. Lasers Med Sci. 2001;16(1):44-51. https://doi.org/10.1007/pl00011336
Mesquita-Ferrari RA, Martins MD, Silva JA Jr, Silva TD, Piovesan RF, Pavesi VC, et al. Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci. 2011;26(3):335-40. https://doi.org/10.1007/s10103-010-0850-5
Ramos L, Leal Junior EC, Pallotta RC, Frigo L, Marcos RL, Carvalho MH, et al. Infrared (810 nm) low-level laser therapy in experimental model of strain-induced skeletal muscle injury in rats: effects on functional outcomes. Photochem Photobiol. 2012;88(1):154-60. https://doi.org/10.1111/j.1751-1097.2011.01030.x
Gonçalves SR, Tim CR, Martignago CCS, Silva MCP, Anaruma CA, Garcia LA. Potential of photobiomodulation therapy in the treatment of skeletal muscle atrophy. Res Soc Dev. 2021;10(1):e931018527. https://doi.org/10.33448/rsd-v10i1.8527
Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O. Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta. 1999;1448(3):372-80. https://doi.org/10.1016/s0167-4889(98)00147-5
Shefer G, Oron U, Irintchev A, Wernig A, Halevy O. Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway. J Cell Physiol. 2001;187(1):73-80. https://doi.org/10.1002/1097-4652(2001)9999:9999<::AID-JCP1053>3.0.CO;2-9
Nakano J, Kataoka H, Sakamoto J, Origuchi T, Okita M, Yoshimura T. Low-level laser irradiation promotes the recovery of atrophied gastrocnemius skeletal muscle in rats. Exp Physiol. 2009;94(9):1005-15. https://doi.org/10.1113/expphysiol.2009.047738
Bibikova A, Belkin V, Oron U. Enhancement of angiogenesis in regenerating gastrocnemius muscle of the toad (Bufo viridis) by low-energy laser irradiation. Anat Embryol (Berl). 1994;190(6):597-602. https://doi.org/10.1007/BF00190110
Iyomasa DM, Garavelo I, Iyomasa MM, Watanabe IS, Issa JP. Ultrastructural analysis of the low-level laser therapy effects on the lesioned anterior tibial muscle in the gerbil. Micron. 2009;40(4):413-8. https://doi.org/10.1016/j.micron.2009.02.002
Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009;95(2):89-92. https://doi.org/10.1016/j.jphotobiol.2009.01.004
Cressoni MDC, Giusti HHKD, Casarotto RA, Anaruma CA. The effects of a 785-nm AlGaInP laser on the regeneration of rat anterior tibialis muscle after surgically induced injury. Photomed Laser Surg. 2008;26(5):461-6. https://doi.org/10.1089/pho.2007.2150
Muniz KL, Dias FJ, Coutinho-Netto J, Calzzani RA, Iyomasa MM, Sousa LG, et al. Properties of the tibialis anterior muscle after treatment with laser therapy and natural latex protein following sciatic nerve crush. Muscle Nerve. 2015;52(5):869-75. https://doi.org/10.1002/mus.24602
Mandelbaum-Livnat MM, Almog M, Nissan M, Loeb E, Shapira Y, Rochkind S. Photobiomodulation Triple Treatment in Peripheral Nerve Injury: Nerve and Muscle Response. Photomed Laser Surg. 2016;34(12):638-45. https://doi.org/10.1089/pho.2016.4095
Kou YT, Liu HT, Hou CY, Lin CY, Tsai CM, Chang H. A transient protective effect of low-level laser irradiation against disuse-induced atrophy of rats. Lasers Med Sci. 2019;34(9):1829-39. https://doi.org/10.1007/s10103-019-02778-5
Svobodova B, Kloudova A, Ruzicka J, Kajtmanova L, Navratil L, Sedlacek R, et al. The effect of 808 nm and 905 nm wavelength light on recovery after spinal cord injury. Sci Rep. 2019;9(1):7660. https://doi.org/10.1038/s41598-019-44141-2
Assis L, Almeida T, Milares LP, Passos N, Araújo B, Bublitz C, et al. Musculoskeletal atrophy in an experimental model of knee osteoarthritis: the effects of exercise training and low-level laser therapy. Am J Phys Med Rehabil. 2015;94(8):609-16. https://doi.org/10.1097/PHM.0000000000000219