Viabilidade do retalho cutâneo randômico dorsal em camundongos submetidos à fotobiomodulação e ultrassom terapêutico
Conteúdo do artigo principal
Resumo
Introdução: O retalho cutâneo é uma técnica cirúrgica amplamente empregada na prática clínica e comumente apresenta complicações pós-operatórias. Portanto, elucidar intervenções que auxiliem na conservação do tecido são fundamentais. A fotobiomodulação (FBM) e o ultrassom terapêutico (UST) são alternativas não invasivas que auxiliam no reparo tecidual, contudo, ainda não há consenso sobre os parâmetros a serem utilizados. Objetivo: Descrever a efetividade dos diferentes parâmetros da FBM e do UST na viabilidade do retalho cutâneo randômico dorsal em camundongos. Métodos: Utilizou-se 55 camundongos Swiss, distribuídos em onze grupos. Os animais foram submetidos à técnica cirúrgica com a revascularização da área limitada através de uma barreira plástica (poliéster/polietileno) da mesma dimensão do retalho. Aplicou-se a FBM ou UST durante cinco dias consecutivos. O registro fotográfico e termográfico foi realizado com as câmeras Cyber-Shot DSC-P72 e FlirC2, sendo posteriormente analisados nos softwares ImageJ® e FLIR Tools, respectivamente. Na análise estatística, os dados foram submetidos ao software GraphPad Prism® 8.0 e ao teste Shapiro-Wilk para a análise da normalidade. Realizou-se a análise de variância (ANOVA Two-way) e pós-teste de Tukey, com nível de significância de 5%. Resultados: Os grupos 5 (FBM 830 nm; 10 J/cm²) e 6 (UST 3 MHz; 0,4W/cm²) apresentaram porcentagens de tecido viável significativamente maiores no terceiro e quinto dia do experimento. A temperatura reduziu significativamente no grupo-1 quando comparado aos demais no pós-operatório. Conclusão: O UST contínuo a 3 MHz e FBM 830 nm, foram mais eficazes melhorando a viabilidade a do retalho cutâneo randômico dorsal em camundongos.
Downloads
Detalhes do artigo
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob uma licença Creative Commons CC BY que permite o compartilhamento e adaptação do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Referências
Ferreira LM. Manual de cirurgia plástica. São Paulo: Atheneu,1995.
Enshaei A, Masoudi N. Survey of early complications of primary skin graft and secondary skin graft (delayed) surgery after resection of burn waste in hospitalized burn patients. Glob J Health Sci. 2014;6(7):98-102. https://doi.org/10.5539/gjhs.v6n7p98
Lucas JB. The physiology and biomechanics of skin flaps. Facial Plast Sur Clin North Am. 2017;25(3):303-11. https://doi.org/10.1016/j.fsc.2017.03.003
Emsen IM. The effect of ultrasound on flap survival: an experimental study in rats. Burns. 2007;33(3):369-71. https://doi.org/10.1016/j.burns.2006.08.007
Freitas AD, Padrini Júnior AG, Tavares KE, Lima LAA. Retalhos antebraquiais pediculados para cobertura dos defeitos cutâneos da mão. Rev Bras Ortop. 1993;28(4):204-8.
Kubota J. Effects of diode laser therapy on blood flow in axial pattern flaps in the rat model. Lasers Med Sci. 2002;17(3):146-53. https://doi.org/10.1007/s101030200024
Neves LMS, Marcolino AM, Prado RP, Thomazini JA. Laser 830nm na viabilidade do retalho cutâneo de ratos submetidos à nicotina. Acta Ortop Bras. 2011;19(6):342-5. https://doi.org/10.1590/S1413-78522011000600004
Neves LMS, Leite GPMF, Marcolino AM, Pinfildi CE, Garcia SB, Araújo JE, et al. Laser Photobiomodulation (830 and 660 Nm) in Mast Cells, VEGF, FGF, and CD34 of the musculocutaneous flap in rats submitted to nicotine. Lasers Med Sci. 2017;32(2):335-41. https://doi.org/10.1007/s10103-016-2118-1
Yadav A, Gupta A. Noninvasive red and near-infrared wavelength-induced photobiomodulation: promoting impaired cutaneous wound healing. Photodermatol Photoimmunol Photomed. 2017;33(1):4-13. https://doi.org/10.1111/phpp.12282
Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):7000417. https://doi.org/10.1109/JSTQE.2016.2561201
Guirro ECO, Montebelo MIL, Bortot BA, Torres MACB, Polacow MLO. Effect of Laser (670 Nm) on healing of wounds covered with occlusive dressing: a histologic and biomechanical analysis. Photomed Laser Surg. 2010;28(5)629-34. https://doi.org/10.1089/pho.2008.2387
Fortuna T, Gonzalez AC, Sá MF, Andrade ZA, Reis SRA, Medrado ARAP. Effect of 670 Nm laser photobiomodulation on vascular density and fibroplasia in late stages of tissue repair. Int Wound J. 2018;15(2)274-82. https://doi.org/10.1111/iwj.12861
Melo VA, Anjos DCS, Albuquerque Júnior R, Melo DB, Carvalho FUR. Effect of low level laser on sutured wound healing in rats. Acta Cir Bras. 2011;26(2):129-34. https://doi.org/10.1590/S0102-86502011000200010
Taşkan I, Ozyazgan I, Tercan M, Kardaş HY, Balkanli S, Saraymen R, et al. A comparative study of the effect of ultrasound and electrostimulation on wound healing in rats. Plast Reconstr Surg. 1997;100(4)966-72. https://doi.org/10.1097/00006534-199709001-00020
Chen YC, Wang PR, Lai TJ, Lu LH, Dai LW, Wang CH. Using therapeutic ultrasound to promote irritated skin recovery after surfactant-induced barrier disruption. Ultrasonics. 2019;91:206-12. https://doi.org/10.1016/j.ultras.2018.08.007
Carrer V, Setti JAP, Veronez DL, Moser AD. Ultra-som terapêutico contínuo no processo de cicatrização na pele de ratos. Fisioter Mov. 2015;28(4):751-8. http://dx.doi.org/10.1590/0103-5150.028.004.AO12
Wakabayashi N, Sakai A, Takada H, Hoshi T, Saco H, Ichinose S, et al. Noncontact phased-array ultrasound facilitates acute wound healing in mice. Plast Reconstr Surg. 2020;145(2):348e-59. https://doi.org/10.1097/PRS.0000000000006481
Matthews MJ, Stretanski MF. Ultrasound Therapy. StatPearls, 2020.
Pouremadi N, Motaghi A, Safdari R, Zarean P, Rashad A, Zarean P, et al. Clinical outcomes of low-level laser therapy in management of advanced implant surgery complications: a comparative clinical study. J Contemp Dent Pract. 2019;20(1):78-82.
Kami T, Yoshimura Y, Nakajima T, Ohshiro T, Fujino T. Effects of low-power diode lasers on flap survival. Anna Plast Surg. 1985;14(3):278-83. https://doi.org/10.1097/00000637-198503000-00013
Pinfildi CE, Liebano RE, Hochman BS, Ferreira LM. Helium-neon laser in viability of random skin flap in rats. Lasers Surge Med. 2005;37(1):74-7. https://doi.org/10.1002/lsm.20190
Prado R, Neves L, Marcolino A, Ribeiro T, Pinfildi C, Ferreira L, et al. Effect of low-level laser therapy on malondialdehyde concentration in random cutaneous flap viability. Photomed Laser Surg. 2010;28(3):379-84. https://doi.org/10.1089/pho.2009.2535
Souza TR, Souza AK, Garcia SB, Neves LMS, Barbosa RI, Guirro RRJ, et al. Photobiomodulation increases viability in full-thickness grafts in rats submitted to nicotine. Lasers Surg Med. 2020;52(5):449-55. https://doi.org/10.1002/lsm.23155
Kubota J. Defocused diode laser therapy (830 Nm) in the treatment of unresponsive skin ulcers: a preliminary trial. J Cosmet Laser Ther. 2004;6(2):96-102. https://doi.org/10.1080/14764170410014983
Calderhead RG, Kim WS, Ohshiro T, Trelles MA, Vasily DB. Adjunctive 830 nm light-emitting diode therapy can improve the results following aesthetic procedures. Laser Ther. 2015;24(4):277-89. https://doi.org/10.5978/islsm.15-OR-17
Kim WS, Calderhead RG. Is light-emitting diode phototherapy (LED-LLLT) really effective?. Laser Ther. 2011;20(3):205-15. https://doi.org/10.5978/islsm.20.205
Hersant B, SidAhmed-Mezi M, Bosc R, Meningaud JP. Current indications of low-level laser therapy in plastic surgery: a review. Photomed Laser Surg. 2015;33(5):283-97. https://doi.org/10.1089/pho.2014.3822
Gonçalves AC, Barbieri CH, Mazzer N, Garcia SB, Thomazini JA. Can Therapeutic Ultrasound Influence the Integration of Skin Grafts?. Ultrasound Med Biol. 2007;33(9):1406-12. https://doi.org/10.1016/j.ultrasmedbio.2007.04.002
Kitchen SS, Partridge CJ. A review of therapeutic ultrasound: I. Background, physiological effects and hazards. Physiotherapy. 1990;76:593.
Dyson M. Mecanisms Involved in therapeutic ultra sound. Physioterapy. 1987;73(3):116-30.
ter Haar G. Therapeutic ultrasound. Eur J Ultrasound. 1999;9(1):3-9. https://doi.org/10.1016/s0929-8266(99)00013-0
Yücel S, Günay GK, Ünverdi ÖF. Effects of ultrasound-assisted preconditioning on critically ischemic skin flaps: an experimental study. Ultrasound Med Biol. 2020;46(3):660-6. https://doi.org/10.1016/j.ultrasmedbio.2019.12.009
Gostishchev VK, Baĭchorov EK, Berchenko GN. Effect of low-frequency ultrasound on the course of the wound process. Vestn Khir Im I I Grek. 1984;133(10):110-3.
Belcik JT, Davidson BP, Xie A, Wu MD, Yadava M, Qi Y, et al. Augmentation of muscle blood flow by ultrasound cavitation is mediated by atp and purinergic signaling. Circulation. 2017;135(13):1240-52. https://doi.org/10.1161/CIRCULATIONAHA.116.024826
Planel E, Richter KE, Nolan CE, Finley JE, Liu L, Wen Y, et al. Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. J Neurosci. 2007;27(12):3090-7. https://doi.org/10.1523/JNEUROSCI.4854-06.2007
Matsukawa T, Sessler DI, Sessler AM, Schroeder M, Ozaki M, Kurz A, et al. Heat flow and distribution during induction of general anesthesia. Anesthesiology. 1995;82(3):662-73. https://doi.org/10.1097/00000542-199503000-00008
Fiebig K, Jourdan T, Kock MH, Merle R, Thöne-Reineke C. Evaluation of Infrared Thermography for Temperature Measurement in Adult Male NMRI Nude Mice. J Am Assoc Lab Anim Sci. 2018;57(6)715-24. https://doi.org/10.30802/AALAS-JAALAS-17-000137
Stadler I, Lanzafame RJ, Oskoui P, Zhang RY, Coleman J, Whittaker M. Alteration of skin temperature during low-level laser irradiation at 830 Nm in a mouse model. Photomed Laser Surg. 2004;22(3):227-31. https://doi.org/10.1089/1549541041438560