Viabilidade do retalho cutâneo randômico dorsal em camundongos submetidos à fotobiomodulação e ultrassom terapêutico

Conteúdo do artigo principal

Laís Coan Fontanela
Jaquelini Betta Canever
Aderbal Silva Aguiar Júnior
Rafael Inácio Barbosa
Marisa de Cássia Registro Fonseca
Heloyse Uliam Kuriki
Lais Mara Siqueira das Neves
Alexandre Marcio Marcolino

Resumo

Introdução: O retalho cutâneo é uma técnica cirúrgica amplamente empregada na prática clínica e comumente apresenta complicações pós-operatórias. Portanto, elucidar intervenções que auxiliem na conservação do tecido são fundamentais. A fotobiomodulação (FBM) e o ultrassom terapêutico (UST) são alternativas não invasivas que auxiliam no reparo tecidual, contudo, ainda não há consenso sobre os parâmetros a serem utilizados. Objetivo: Descrever a efetividade dos diferentes parâmetros da FBM e do UST na viabilidade do retalho cutâneo randômico dorsal em camundongos. Métodos: Utilizou-se 55 camundongos Swiss, distribuídos em onze grupos. Os animais foram submetidos à técnica cirúrgica com a revascularização da área limitada através de uma barreira plástica (poliéster/polietileno) da mesma dimensão do retalho. Aplicou-se a FBM ou UST durante cinco dias consecutivos. O registro fotográfico e termográfico foi realizado com as câmeras Cyber-Shot DSC-P72 e FlirC2, sendo posteriormente analisados nos softwares ImageJ® e FLIR Tools, respectivamente. Na análise estatística, os dados foram submetidos ao software GraphPad Prism® 8.0 e ao teste Shapiro-Wilk para a análise da normalidade. Realizou-se a análise de variância (ANOVA Two-way) e pós-teste de Tukey, com nível de significância de 5%. Resultados: Os grupos 5 (FBM 830 nm; 10 J/cm²) e 6 (UST 3 MHz; 0,4W/cm²) apresentaram porcentagens de tecido viável significativamente maiores no terceiro e quinto dia do experimento. A temperatura reduziu significativamente no grupo-1 quando comparado aos demais no pós-operatório. Conclusão: O UST contínuo a 3 MHz e FBM 830 nm, foram mais eficazes melhorando a viabilidade a do retalho cutâneo randômico dorsal em camundongos.

Downloads

Não há dados estatísticos.

Detalhes do artigo

Como Citar
Fontanela, L. C., Canever, J. B., Aguiar Júnior, A. S., Barbosa, R. I., Fonseca, M. de C. R., Kuriki, H. U., Neves, L. M. S. das, & Marcolino, A. M. (2022). Viabilidade do retalho cutâneo randômico dorsal em camundongos submetidos à fotobiomodulação e ultrassom terapêutico. ABCS Health Sciences, 47, e022227. https://doi.org/10.7322/abcshs.2021013.2122
Seção
Artigos Originais

Referências

Ferreira LM. Manual de cirurgia plástica. São Paulo: Atheneu,1995.

Enshaei A, Masoudi N. Survey of early complications of primary skin graft and secondary skin graft (delayed) surgery after resection of burn waste in hospitalized burn patients. Glob J Health Sci. 2014;6(7):98-102. https://doi.org/10.5539/gjhs.v6n7p98

Lucas JB. The physiology and biomechanics of skin flaps. Facial Plast Sur Clin North Am. 2017;25(3):303-11. https://doi.org/10.1016/j.fsc.2017.03.003

Emsen IM. The effect of ultrasound on flap survival: an experimental study in rats. Burns. 2007;33(3):369-71. https://doi.org/10.1016/j.burns.2006.08.007

Freitas AD, Padrini Júnior AG, Tavares KE, Lima LAA. Retalhos antebraquiais pediculados para cobertura dos defeitos cutâneos da mão. Rev Bras Ortop. 1993;28(4):204-8.

Kubota J. Effects of diode laser therapy on blood flow in axial pattern flaps in the rat model. Lasers Med Sci. 2002;17(3):146-53. https://doi.org/10.1007/s101030200024

Neves LMS, Marcolino AM, Prado RP, Thomazini JA. Laser 830nm na viabilidade do retalho cutâneo de ratos submetidos à nicotina. Acta Ortop Bras. 2011;19(6):342-5. https://doi.org/10.1590/S1413-78522011000600004

Neves LMS, Leite GPMF, Marcolino AM, Pinfildi CE, Garcia SB, Araújo JE, et al. Laser Photobiomodulation (830 and 660 Nm) in Mast Cells, VEGF, FGF, and CD34 of the musculocutaneous flap in rats submitted to nicotine. Lasers Med Sci. 2017;32(2):335-41. https://doi.org/10.1007/s10103-016-2118-1

Yadav A, Gupta A. Noninvasive red and near-infrared wavelength-induced photobiomodulation: promoting impaired cutaneous wound healing. Photodermatol Photoimmunol Photomed. 2017;33(1):4-13. https://doi.org/10.1111/phpp.12282

Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):7000417. https://doi.org/10.1109/JSTQE.2016.2561201

Guirro ECO, Montebelo MIL, Bortot BA, Torres MACB, Polacow MLO. Effect of Laser (670 Nm) on healing of wounds covered with occlusive dressing: a histologic and biomechanical analysis. Photomed Laser Surg. 2010;28(5)629-34. https://doi.org/10.1089/pho.2008.2387

Fortuna T, Gonzalez AC, Sá MF, Andrade ZA, Reis SRA, Medrado ARAP. Effect of 670 Nm laser photobiomodulation on vascular density and fibroplasia in late stages of tissue repair. Int Wound J. 2018;15(2)274-82. https://doi.org/10.1111/iwj.12861

Melo VA, Anjos DCS, Albuquerque Júnior R, Melo DB, Carvalho FUR. Effect of low level laser on sutured wound healing in rats. Acta Cir Bras. 2011;26(2):129-34. https://doi.org/10.1590/S0102-86502011000200010

Taşkan I, Ozyazgan I, Tercan M, Kardaş HY, Balkanli S, Saraymen R, et al. A comparative study of the effect of ultrasound and electrostimulation on wound healing in rats. Plast Reconstr Surg. 1997;100(4)966-72. https://doi.org/10.1097/00006534-199709001-00020

Chen YC, Wang PR, Lai TJ, Lu LH, Dai LW, Wang CH. Using therapeutic ultrasound to promote irritated skin recovery after surfactant-induced barrier disruption. Ultrasonics. 2019;91:206-12. https://doi.org/10.1016/j.ultras.2018.08.007

Carrer V, Setti JAP, Veronez DL, Moser AD. Ultra-som terapêutico contínuo no processo de cicatrização na pele de ratos. Fisioter Mov. 2015;28(4):751-8. http://dx.doi.org/10.1590/0103-5150.028.004.AO12

Wakabayashi N, Sakai A, Takada H, Hoshi T, Saco H, Ichinose S, et al. Noncontact phased-array ultrasound facilitates acute wound healing in mice. Plast Reconstr Surg. 2020;145(2):348e-59. https://doi.org/10.1097/PRS.0000000000006481

Matthews MJ, Stretanski MF. Ultrasound Therapy. StatPearls, 2020.

Pouremadi N, Motaghi A, Safdari R, Zarean P, Rashad A, Zarean P, et al. Clinical outcomes of low-level laser therapy in management of advanced implant surgery complications: a comparative clinical study. J Contemp Dent Pract. 2019;20(1):78-82.

Kami T, Yoshimura Y, Nakajima T, Ohshiro T, Fujino T. Effects of low-power diode lasers on flap survival. Anna Plast Surg. 1985;14(3):278-83. https://doi.org/10.1097/00000637-198503000-00013

Pinfildi CE, Liebano RE, Hochman BS, Ferreira LM. Helium-neon laser in viability of random skin flap in rats. Lasers Surge Med. 2005;37(1):74-7. https://doi.org/10.1002/lsm.20190

Prado R, Neves L, Marcolino A, Ribeiro T, Pinfildi C, Ferreira L, et al. Effect of low-level laser therapy on malondialdehyde concentration in random cutaneous flap viability. Photomed Laser Surg. 2010;28(3):379-84. https://doi.org/10.1089/pho.2009.2535

Souza TR, Souza AK, Garcia SB, Neves LMS, Barbosa RI, Guirro RRJ, et al. Photobiomodulation increases viability in full-thickness grafts in rats submitted to nicotine. Lasers Surg Med. 2020;52(5):449-55. https://doi.org/10.1002/lsm.23155

Kubota J. Defocused diode laser therapy (830 Nm) in the treatment of unresponsive skin ulcers: a preliminary trial. J Cosmet Laser Ther. 2004;6(2):96-102. https://doi.org/10.1080/14764170410014983

Calderhead RG, Kim WS, Ohshiro T, Trelles MA, Vasily DB. Adjunctive 830 nm light-emitting diode therapy can improve the results following aesthetic procedures. Laser Ther. 2015;24(4):277-89. https://doi.org/10.5978/islsm.15-OR-17

Kim WS, Calderhead RG. Is light-emitting diode phototherapy (LED-LLLT) really effective?. Laser Ther. 2011;20(3):205-15. https://doi.org/10.5978/islsm.20.205

Hersant B, SidAhmed-Mezi M, Bosc R, Meningaud JP. Current indications of low-level laser therapy in plastic surgery: a review. Photomed Laser Surg. 2015;33(5):283-97. https://doi.org/10.1089/pho.2014.3822

Gonçalves AC, Barbieri CH, Mazzer N, Garcia SB, Thomazini JA. Can Therapeutic Ultrasound Influence the Integration of Skin Grafts?. Ultrasound Med Biol. 2007;33(9):1406-12. https://doi.org/10.1016/j.ultrasmedbio.2007.04.002

Kitchen SS, Partridge CJ. A review of therapeutic ultrasound: I. Background, physiological effects and hazards. Physiotherapy. 1990;76:593.

Dyson M. Mecanisms Involved in therapeutic ultra sound. Physioterapy. 1987;73(3):116-30.

ter Haar G. Therapeutic ultrasound. Eur J Ultrasound. 1999;9(1):3-9. https://doi.org/10.1016/s0929-8266(99)00013-0

Yücel S, Günay GK, Ünverdi ÖF. Effects of ultrasound-assisted preconditioning on critically ischemic skin flaps: an experimental study. Ultrasound Med Biol. 2020;46(3):660-6. https://doi.org/10.1016/j.ultrasmedbio.2019.12.009

Gostishchev VK, Baĭchorov EK, Berchenko GN. Effect of low-frequency ultrasound on the course of the wound process. Vestn Khir Im I I Grek. 1984;133(10):110-3.

Belcik JT, Davidson BP, Xie A, Wu MD, Yadava M, Qi Y, et al. Augmentation of muscle blood flow by ultrasound cavitation is mediated by atp and purinergic signaling. Circulation. 2017;135(13):1240-52. https://doi.org/10.1161/CIRCULATIONAHA.116.024826

Planel E, Richter KE, Nolan CE, Finley JE, Liu L, Wen Y, et al. Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. J Neurosci. 2007;27(12):3090-7. https://doi.org/10.1523/JNEUROSCI.4854-06.2007

Matsukawa T, Sessler DI, Sessler AM, Schroeder M, Ozaki M, Kurz A, et al. Heat flow and distribution during induction of general anesthesia. Anesthesiology. 1995;82(3):662-73. https://doi.org/10.1097/00000542-199503000-00008

Fiebig K, Jourdan T, Kock MH, Merle R, Thöne-Reineke C. Evaluation of Infrared Thermography for Temperature Measurement in Adult Male NMRI Nude Mice. J Am Assoc Lab Anim Sci. 2018;57(6)715-24. https://doi.org/10.30802/AALAS-JAALAS-17-000137

Stadler I, Lanzafame RJ, Oskoui P, Zhang RY, Coleman J, Whittaker M. Alteration of skin temperature during low-level laser irradiation at 830 Nm in a mouse model. Photomed Laser Surg. 2004;22(3):227-31. https://doi.org/10.1089/1549541041438560