Efeitos da exposição gestacional e lactacional ao etanol sobre o crescimento corporal e ósseo da prole de rato
Conteúdo do artigo principal
Resumo
Introdução: O etanol é a droga mais consumida no mundo. Quando esse consumo ocorre por mulheres grávidas, os efeitos nocivos se estendem ao feto. Existem poucos dados disponíveis sobre seus efeitos em lactentes. Objetivo: Avaliar os efeitos do consumo materno de etanol durante a gravidez (pré-natal), bem como durante a gravidez e lactação (pré e pós-natal). Métodos: 12 ratos Wistar foram divididos em grupos etanol e controle. O grupo etanol recebeu etanol (4 g/kg/dia) via oral por gavagem do nono dia de gestação ao 17º dia de lactação. O peso e o comprimento dos filhotes foram determinados ao nascimento e aos 17 dias de idade. O comprimento e a largura do fêmur e da tíbia a espessura da epífise foram medidos nos neonatos, e a espessura da cartilagem articular, placa epifisária e suas zonas foram medidas aos 17 dias de idade. A imunoexpressão de CDC-47 foi avaliada e as expressões de agrecan, colágeno tipo II e colágeno tipo X foram determinadas por RT-PCR. Resultados: Nos neonatos, os ratos do grupo com exposição pré-natal ao etanol eram significativamente menores (comprimento do corpo) do que o grupo controle. Aos 17 dias de idade, o fêmur do grupo com exposição pré e pós-natal ao etanol apresentou percentual significativamente menor de condrócitos proliferativos, comprovado pela imunoexpressão de CDC-47 diferente entre os grupos. Conclusão: A exposição pré-natal ao etanol em ratos reduziu o comprimento do corpo ao nascer, enquanto a exposição pré e pós-natal ao etanol diminuiu a proliferação de condrócitos da placa epifisária femoral.
Downloads
Detalhes do artigo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob uma licença Creative Commons CC BY que permite o compartilhamento e adaptação do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Referências
Grigoriou E, Trocle A, Dormans JP. The growth plate: embryologic origin, structure, and function. In: Polin RA, Abman SH, Rowitch DH, Benitz WE, Fox WW. Fetal and neonatal physiology. 5th ed. V. 2; Philadelphia: Elsevier; 2017; p. 1421-9.e2.
Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: How cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46-62. https://doi.org/10.1016/j.biocel.2007.06.009
Ono N, Kronenberg HM. Developmental biology of musculoskeletal tissues for tissue engineers. In: Stoddart MJ, Craft AM, Pattappa G, Gardner OFW. Developmental biology and musculoskeletal tissue engineering: principles and applications. London: Academic Press; 2018; p. 1-24.
Snow ME, Keiver K. Prenatal ethanol exposure disrupts the histological stages of fetal bone development. Bone. 2007;41(2):181-7. https://doi.org/10.1016/j.bone.2007.04.182
Lovely CB. Animal models of gene–alcohol interactions. Birth Defects Res. 2019;112(4):367-79. https://doi.org/10.1002/bdr2.1623
Popova S, Charness ME, Burd L, Crawford A, Hoyme HE, Mukherjee RAS, et al. Fetal alcohol spectrum disorders. Nat Rev Dis Primers. 2023;9:11. https://doi.org/10.1038/s41572-023-00420-x
Dörrie N, Föcker M, Freunscht I, Hebebrand J. Fetal alcohol spectrum disorders. Eur Child Adolesc Psychiatry. 2014;23(10):863-75. https://doi.org/10.1007/s00787-014-0571-6
Day NL, Leech SL, Richardson GA, Cornelius MD, Robles N, Larkby C. Prenatal alcohol exposure predicts continued deficits in offspring size at 14 years of age. Alcohol Clin Exp Res. 2002;26(10):1584-91. https://doi.org/10.1097/01.ALC.0000034036.75248.D9
Pan Z, Zhang X, Shangguan Y, Hu H, Chen L, Wang H. Suppressed osteoclast differentiation at the chondro-osseous junction mediates endochondral ossification retardation in long bones of Wistar fetal rats with prenatal ethanol exposure. Toxicol Appl Pharmacol. 2016;305:234-41. https://doi.org/10.1016/j.taap.2016.06.021
Ni Q, Wang L, Wu Y, Shen L, Qin J, Liu Y, et al. Prenatal ethanol exposure induces the osteoarthritis-like phenotype in female adult offspring rats with a post-weaning high-fat diet and its intrauterine programming mechanisms of cholesterol metabolism. Toxicol Lett. 2015;238(2):117-25. http://dx.doi.org/10.1016/j.toxlet.2015.07.017
Fish EW, Murdaugh LB, Sulik KK, Williams KP, Parnell SE. Genetic vulnerabilities to prenatal alcohol exposure: Limb defects in sonic hedgehog and GLI2 heterozygous mice. Birth Defects Res. 2017;109(11):860-65. https://doi.org/10.1002/bdr2.1026
Ramadoss J, Magness RR. Vascular effects of maternal alcohol consumption. Am J Physiol Hear Circ Physiol. 2012;303(4):H414-21. https://doi.org/10.1152/ajpheart.00127.2012
Barbosa MMB, Aguiar Júnior FCA, Maia CS, Tenório FCAM, Oliveira LS, Medeiros JP. Aspectos morfológicos do estômago de ratos submetidos ao desmame precoce. Brazilian J Heal Ver. 2020;3(5):13876-89. https://doi.org/10.34119/bjhrv3n5-200
Kesäniemi YA. Ethanol and Acetaldehyde in the Milk and Peripheral Blood of Lactating Women After Ethanol Administration. J Obstet Gynaecol Br Commonw. 1974;81(1):84-6.
Carmo MGT, Nascimento CMO, Martin A, Herrera E. Ethanol intake during lactation impairs milk production in rats and affects growth and metabolism of suckling pups. Alcohol. 1999;18(1):71-6. https://doi.org/10.1016/s0741-8329(98)00070-6
Giglia RC. Alcohol and lactation: An updated systematic review. Nutr Diet. 2010;67(4):237-43. https://doi.org/10.1111/j.1747-0080.2010.01469.x
Marcondes FK, Bianchi FJ, Tanno AP. Determination of the estrous cycle phases of rats: Some helpful considerations. Brazilian J Biol. 2002;62(4A):609-14. https://doi.org/10.1590/S1519-69842002000400008
Walker BM, Ehlers CL. Age-related differences in the blood alcohol levels of Wistar rats. Pharmacol Biochem Behav. 2009;91(4):560-5. https://doi.org/10.1016/j.pbb.2008.09.017
Jones SA, Lueras JM, Nagel BJ. Effects of binge drinking on the developing brain. Alcohol Res. 2018;39(1):87-96.
Shen L, Liu Z, Gong J, Zhang L, Wang L, Magdalou J, et al. Prenatal ethanol exposure programs an increased susceptibility to non-alcoholic fatty liver disease in female adult offspring rats. Toxicol Appl Pharmacol. 2014;274(2):263-73. http://dx.doi.org/10.1016/j.taap.2013.11.009
Sengupta P. The laboratory rat: Relating its age with humans. Int J Prev Med. 2013;4(6):624-30.
Vilaró S, Viñas O, Remesar X, Herrera E. Effects of Chronic Ethanol Consumption on Lactational Performance in Rat: Mammary Gland and Milk Composition and Pups’ Growth and Metabolism. Pharmacol Biochem Behav. 1987;27(2):333-9. https://doi.org/10.1016/0091-3057(87)90577-6
Barve S, Chen SY, Kirpich I, Watson WH, McClain C. Development, prevention, and treatment of alcohol-induced organ injury: the role of nutrition. Alcohol Res. 2017;38(2):289-302.
Young JK, Giesbrecht HE, Eskin MN, Aliani M, Suh M. Nutrition implications for fetal alcohol spectrum disorder. Adv Nutr. 2014;5(6):675-92. https://doi.org/10.3945/an.113.004846
Cardoso KMMC, Gomes LA, Reis AMS, Silva CMO, Tamiasso NV, Serakides R, et al. Phenotype and synthesis activity of joint chondrocytes extracted from newborn rats with prenatal ethanol exposure. Hum Exp Toxicol. 2021;40(12 Suppl):S414-22. https://doi.org/10.1177/09603271211045949
Gomes LA, Cardoso KMMC, Reis AMS, Melo FG, Serakides R, Ocarino NM. Effect of ethanol consumption during pregnancy and lactation on bone histomorphometry and in vitro osteogenic differentiation of bone marrow mesenchymal stem cells in maternal rats. Alcohol. 2021; 95:51-64. https://doi.org/10.1016/j.alcohol.2021.07.001
Aros S, Mills JL, Iñiguez G, Avila A, Conley MR, Troendle J, et al. Effects of prenatal ethanol exposure on postnatal growth and the insulin-like growth factor axis. Horm Res Paediatr. 2011;75(3):166-73. https://doi.org/10.1159/000319706
Kaminen-Ahola N, Ahola A, Maga M, Mallitt KA, Fahey P, Cox TC, et al. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet. 2010;6(1):e1000811. https://doi.org/10.1371/journal.pgen.1000811
Wu Z, Pan Z, Wen Y, Xiao H, Shangguan Y, Wang H, et al. Egr1/p300/ACE signal mediates postnatal osteopenia in female rat offspring induced by prenatal ethanol exposure. Food Chem Toxicol. 2020;136:111083. https://doi.org/10.1016/j.fct.2019.111083
Ni Q, Tan Y, Zhang X, Luo H, Deng Y, Magdalou J, et al. Prenatal ethanol exposure increases osteoarthritis susceptibility in female rat offspring by programming a low-functioning IGF-1 signaling pathway. Sci Rep. 2015;5:14711. https://doi.org/10.1038/srep14711
Perry V. Effects of prenatal alcohol exposure on 3-week-old Sprague-Dawley rat proximal tibia: an immunohistochemical and three-dimensional micro-computed tomography X-ray investigation. [Dissertation]. [Johannesburg]: University of the Witwatersrand, 2018; p. 49-80.
Rojiani M V, Siemann DW, Rojiani AM. Cell proliferation index determination by immunohistochemical detection of hCDC47 protein. Appl Immunohistochem Mol Morphol. 2010;18(3):278-82. https://doi.org/10.1097/PAI.0b013e3181c6c949
Guizzetti M, Catlin M, Costa LG. Effects of ethanol on glial cell proliferation: relevance to the fetal alcohol syndrome. Front Biosci. 1997;2(5):93-8. https://doi.org/10.2741/a230
Redila VA, Olson AK, Swann SE, Mohades G, Webber AJ, Weinberg J, et al. Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise. Hippocampus. 2006;16(3):305-11. https://doi.org/10.1002/hipo.20164
Friday KE, Howard GA. Ethanol inhibits human bone cell proliferation and function in vitro. Metabolism. 1991;40(6):562-5. https://doi.org/10.1016/0026-0495(91)90044-w
Lui JC, Jee YH, Garrison P, Iben JR, Yue S, Ad M, et al. Differential aging of growth plate cartilage underlies differences in bone length and thus helps determine skeletal proportions. PLoS Biol. 2018;16(7):e2005263. https://doi.org/10.1371/journal.pbio.2005263
Gafni RI, Weise M, Robrecht DT, Meyers JL, Barnes KM, De-Levi S, et al. Catch-up growth is associated with delayed senescence of the growth plate in rabbits. Pediatr Res. 2001;50(5):618-23. https://doi.org/10.1203/00006450-200111000-00014
Staines KA, Pollard AS, McGonnell IM, Farquharson C, Pitsillides AA. Cartilage to bone transitions in health and disease. J Endocrinol. 2013;219(1):R1-12. https://doi.org/10.1530/JOE-13-0276
Tamiasso NV, Silva CMO, Reis AMS, Ocarino NM, Serakides R. Ethanol alters phenotype and synthesis activity of rat neonatal articular chondrocytes grown in 2- and 3-dimensional culture. Cartilage. 2019;13(12 Suppl):839S-46. https://doi.org/10.1177/1947603519870862
Maran A, Zhang M, Spelsberg TC, Turner RT. The dose-response effects of ethanol on the human fetal osteoblastic cell line. J Bone Miner Res. 2001;16(2):270-6. https://doi.org/10.1359/jbmr.2001.16.2.270