A neurotoxicidade da Cannabis sativa e suas repercussões sobre a morfologia do tecido cerebral

Conteúdo do artigo principal

Bárbara da Silva Santos
Marcelo Coertjens

Resumo

Para a compreensão das repercussões psicológicas e comportamentais verificadas em usuários de Cannabis sativa, experimentos têm sido desenvolvidos analisando a relação entre a intensidade do uso da droga e biomarcadores de lesão e inflamação. Dessa forma, este estudo teve como objetivo realizar pesquisa bibliográfica, relacionando marcadores bioquímicos de neurotoxicidade e suas repercussões sobre a morfologia do tecido cerebral em usuários de Cannabis sativa, durante a exposição ao ∆9-THC por via intravenosa e em pesquisas in vitro. Trata-se de uma revisão narrativa cuja pesquisa bibliográfica foi realizada nos bancos de dados PubMed, SciELO e Google Acadêmico, utilizando-se como critério de inclusão os seguintes termos: “Cannabis sativa”, “marijuana”, “maconha”, “Δ9-THC”, “neurotrophins”, “neurotrofinas”, “prostaglandins”, “prostaglandinas”, “BDNF” e “NGF”. Dessa forma, foram selecionados 40 artigos para integrar a presente revisão, datados de 1987 a 2013. O período de realização da pesquisa bibliográfica foi de agosto de 2011 a maio de 2013. Foi possível identificar os tipos e a magnitude das alterações morfológicas e bioquímicas decorrentes do uso de Cannabis sativa ou da exposição ao ∆9-THC. De uma forma geral, foi constatada a diminuição das massas cinzenta e branca do cérebro, da densidade do hipocampo, do volume das células neurais, entre outros. Foram constatadas também alterações nos níveis séricos de neurotrofinas e na biossíntese de prostaglandinas, de acordo com a metodologia utilizada ou região avaliada. Esses achados poderiam estar relacionados às mudanças comportamentais observadas em usuários de Cannabis sativa, esclarecendo, por exemplo, diversos sintomas psíquicos relatados na literatura.

Downloads

Não há dados estatísticos.

Detalhes do artigo

Como Citar
Santos, B. da S., & Coertjens, M. (2014). A neurotoxicidade da Cannabis sativa e suas repercussões sobre a morfologia do tecido cerebral. ABCS Health Sciences, 39(1). https://doi.org/10.7322/abcshs.v39i1.250
Seção
Artigos de Revisão

Referências

United Nations Office for Drug Control and Crime Prevention. World drug report. Geneva: United Nations Publications; 2013.

Crippa JA, Lacerda ALT, Amaro E, Filho GB, Zuardi AW, Bressan RA. Efeitos cerebrais da maconha: resultados dos estudos de neuroimagem. Rev Bras Psiquiatr. 2005;27(1):70-8. http://dx.doi.org/10.1590/S1516-44462005000100016

Chan GCK, Hinds TR, Impey S, Storm DR. Hippocampal neurotoxicity of ∆9-tetrahydrocannabinol. J Neurosci. 1998;18(14):5322-32.

Lawston J, Borella A, Robinson JK, Whitaker-Azmitia PM. Changes in hippocampal morphology following chronic treatment with the synthetic cannabinoid WIN 55,212-2. Brain Res. 2000;877(2):407-10. http://dx.doi.org/10.1016/S0006-8993(00)02739-6

Schlaepfer TE, Lancaster E, Heidbreder R, Strain EC, Kosel M, Fisch HU, et al. Decreased frontal white-matter volume in chronic substance abuse. Int J Neuropsychopharmacol. 2006;9(2):147-53. http://dx.doi.org/10.1017/S1461145705005705

Yücel M, Solowij N, Respondek C, Whittle S, Fornito A, Pantelis C, et al. Regional brain abnormalities associated with long-term heavy Cannabis use. Arch Gen Psychiatry. 2008;65(6):694-701. http://dx.doi.org/10.1001/archpsyc.65.6.694

Shimizu E, Hashimoto K, Watanabe H, Komatsu N, Okamura N, Koike K, et al. Serum brain-derived neurotrophic factor (BDNF) levels in schizophrenia are indistinguishable from controls. Neurosci Lett. 2003;351(2):111-14. http://dx.doi.org/10.1016/j.neulet.2003.08.004

D'Souza DC, Pittman B, Perry E, Simen A. Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans. Psychopharmacology. 2009;202(4):569-78. http://dx.doi.org/10.1007/s00213-008-1333-2

Tuszynski MH, Blesch A. Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer's disease. Prog Brain Res. 2004;146:441-9. http://dx.doi.org/10.1016/S0079-6123(03)46028-7

Kozak KR, Crews BC, Morrow JD, Wang LH, Ma YH, Weinander R, et al. Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides. J Biol Chem. 2002;277(47):44877-85. http://dx.doi.org/10.1074/jbc.M206788200

Veldhuis WB, van der Stelt M, Wadman MW, van Zadelhoff G, Maccarrone M, Fezza F, et al. V. Neuroprotection by the endogenous cannabinoid anandamide and arvanil against in vivo excitotoxicity in the rat: role of vanilloid receptors and lipoxygenases. J Neurosci. 2003;23(10):4127-33.

Wilson W, Mathew R, Turkington T, Hawk T, Coleman RE, Provenzale J. Brain morphological changes and early marijuana use: a magnetic resonance and positron emission tomography study. J Addict Dis. 2000;19(1):1-22. http://dx.doi.org/10.1300/J069v19n01_01

Matochik JA, Eldreth DA, Cadet JL, Bolla KI. Altered brain tissue composition in heavy marijuana users. Drug Alcohol Depend. 2005;77(1):23-30. http://dx.doi.org/10.1016/j.drugalcdep.2004.06.011

Block RI, O'Leary DS, Ehrhardt JC, Augustinack JC, Ghoneim MM, Arndt S, et al. Effects of frequent marijuana use on brain tissue volume and composition. Neuroreport. 2000;11(3):491-6. http://dx.doi.org/10.1097/00001756-200002280-00013

Scallet AC, Uemura E, Andrews A, Ali SF, McMillan DE, Paule MG, et al. Morphometric studies of the rat hippocampus following chronic delta-9-tetrahydrocannabinol (THC). Brain Res.1987;436(1):193-8. http://dx.doi.org/10.1016/0006-8993(87)91576-9

Landfield PW, Cadwallader LB, Vinsant S. Quantitative changes in hippocampal structure following long-term exposure to ∆9-tetrahydrocannabinol: possible mediation by glucocorticoid systems. Brain Res. 1988;443(1-2):47-62. http://dx.doi.org/10.1016/0006-8993(88)91597-1

Allen SJ, Dawbarn D. Clinical relevance of the neurotrophins and their receptors. Clin Sci. 2006;110(2):175-91. http://dx.doi.org/10.1042/CS20050161

Madduri S, Papaloïzos M, Gander B. Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neurosci Res. 2009;65(1): 88-97. http://dx.doi.org/10.1016/j.neures.2009.06.003

Schmidt HD, Duman RS. Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacol. 2010;35(12):2378-91. http://dx.doi.org/10.1038/npp.2010.114

Angelucci F, Ricci V, Spalletta G, Pomponi M, Tonioni F, Caltagirone C, et al. Reduced serum concentrations of nerve growth factor, but not brain-derived neurotrophic factor, in chronic cannabis abusers. Eur Neuropsychopharmacol. 2008;18(12):882-7. http://dx.doi.org/10.1016/j.euroneuro.2008.07.008

Jockers-Scherübl MC, Matthies U, Danker-Hopfe H, Lang UE, Mahlberg R, Hellweg R. Chronic cannabis abuse raises nerve growth factor serum concentrations in drug-naive schizophrenic patients. J Psychopharmacol. 2003;17(4):439-45. http://dx.doi.org/10.1177/0269881103174007

Toyooka K, Asama K, Watanabe Y, Muratake T, Takahashi M, Someya T, et al. Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res. 2002;110(3):249-57. http://dx.doi.org/10.1016/S0165-1781(02)00127-0

Yamamoto H, Gurney ME. Human platelets contain brain-derived neurotrophic factor. J Neurosci. 1990;10(11):3469-78.

Jockers-Scherübl MC, Danker-Hopfe H, Mahlberg R, Selig F, Rentzsch J, Schurer F, et al. Brain-derived neurotrophic factor serum concentrations are increased in drug-naive schizophrenic patients with chronic Cannabis abuse and multiple substance abuse. Neurosci Lett. 2004;371(1):79-83. http://dx.doi.org/10.1016/j.neulet.2004.08.045

Giudice LC. Clinical practice. Endometriosis. N Engl J Med. 2010;362(25):2389-98. http://dx.doi.org/10.1056/NEJMcp1000274

Jockers-Scherübl MC, Zouboulis CC, Boegner F, Hellweg R. Is nerve growth factor a serum marker for neurological and psychiatric complications in Behçet's disease? Lancet. 1996;347(9006):982. http://dx.doi.org/10.1016/S0140-6736(96)91476-2

Wu VW, Mo Q, Yabe T, Schwartz JP, Robinson SE. Perinatal opioids reduce striatal nerve growth factor content in rat striatum. Eur J Pharmacol. 2001;414(2-3):211-4. http://dx.doi.org/10.1016/S0014-2999(01)00807-X

Aloe L, Tuveri MA, Guerra G, Pinna L, Tirassa P, Micera A, et al. Changes in human plasma nerve growth factor level after chronic alcohol consumption and withdrawal. Alcohol Clin Exp Res. 1996;20(3):462-5. http://dx.doi.org/10.1111/j.1530-0277.1996.tb01076.x

Zhang XY, Xiu MH, Chen C, Yang FD, Wu GY, Lu L, et al. Nicotine dependence and serum BDNF levels in male patients with schizophrenia. Psychopharmacology. 2010;212(3):301-7. http://dx.doi.org/10.1007/s00213-010-1956-y

McCarthy DM, Zhang X, Darnell SB, Sangrey GR, Yanagawa Y, Sadri-Vakili G, et al. Cocaine alters BDNF expression and neuronal migration in the embryonic mouse forebrain. J Neurosci. 2011;31(38):13400-11. http://dx.doi.org/10.1523/JNEUROSCI.2944-11.2011

Anggadiredja K, Yamaguchi T, Tanaka H, Shoyama Y, Watanabe S, Yamamoto T. Decrease in prostaglandin level is a prerequisite for the expression of cannabinoid withdrawal: a quasi abstinence approach. Brain Res. 2005;1066(1-2):201-5. http://dx.doi.org/10.1016/j.brainres.2005.10.065

Sang N, Zhang J, Chen C. COX-2 oxidative metabolite of endocannabinoid 2-AG enhances excitatory glutamatergic synaptic transmission and induces neurotoxicity. J Neurochem. 2007;102(6):1966-77. http://dx.doi.org/10.1111/j.1471-4159.2007.04668.x

Păunescu H, Coman OA, Coman L, Ghiţă I, Georgescu SR, Drăghia F, et al. Cannabinoid system and cyclooxygenases inhibitors. J Med Life. 2011;4(1):11-20.

Mitchell MD, Sato TA, Wang A, Keelan JA, Ponnampalam AP, Glass M. Cannabinoids stimulate prostaglandin production by human gestational tissues through a tissue and CB1 receptor specific mechanism. Am J Physiol Endocrinol Metab. 2008;294(2):E352-6. http://dx.doi.org/10.1152/ajpendo.00495.2007

Ruhaak LR, Felth J, Karlsson PC, Rafter JJ, Verpoorte R, Bohlin L. Evaluation of the cyclooxygenase inhibiting effects of six major cannabinoids isolated from Cannabis sativa. Biol Pharm Bull. 2011;34(5):774-8. http://dx.doi.org/10.1248/bpb.34.774

Qamri Z, Preet A, Nasser MW, Bass CE, Leone G, Barsky SH, et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther. 2009;8(11):3117-29. http://dx.doi.org/10.1158/1535-7163.MCT-09-0448

Guindon J, Hohmann AG. The endocannabinoid system and cancer: therapeutic implication. Br J Pharmacol. 2011;163(7):1447-63. http://dx.doi.org/10.1111/j.1476-5381.2011.01327.x

Romero TR, Resende LC, Duarte ID. The neuronal NO synthase participation in the peripheral antinociception mechanism induced by several analgesic drugs. 2001. Nitric Oxide. 2011;25(4):431-5. http://dx.doi.org/10.1016/j.niox.2011.08.002

Zalesky A, Solowij N, Yücel M, Lubman DI, Takagi M, Harding IH, et al. Effect of long-term cannabis use on axonal fibre connectivity. Brain. 2012;135(Pt 7):2245-55. http://dx.doi.org/10.1093/brain/aws136

Batalla A, Bhattacharyya S, Yücel M, Fusar-Poli P, Crippa JA, Nogué S, et al. Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings. PLoS One. 2013;8(2):e55821.